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Heuristic scheduling of parallel machines with sequence-dependent set-up
times

M. E. KURZy and R. G. ASKINy*

In many manufacturing environments, multiple processing stations are used in
parallel to obtain adequate capacity. Likewise, in many production environments,
set-up activities are required for switching between items. This work addresses
scheduling in parallel machines with sequence dependent set-up times and poss-
ibly non-zero ready times with the goal of minimizing makespan. Non-zero ready
times allow for application in a continuous planning environment and will also
support the expansion of the current model to a multistage production environ-
ment. An integer programming formulation is presented. Several heuristics,
including approaches based on MULTI-FIT, genetic algorithms and the travel-
ling salesman problem, are then developed and compared empirically. Seven
factors are identi®ed in order to generate problem data, including the number
of parallel machines, the average number of jobs per machine, set-up time distri-
bution parameters and processing time distribution parameters. The set-up time
matrix can be either symmetric or asymmetric but must satisfy the triangle
inequality. A modi®ed insertion heuristic is found to perform best for these
types of problems.

1. Introduction
In many manufacturing environments, multiple processing stations are used in

parallel to obtain adequate capacity. Likewise, in many production environments,
set-up activities are required for switching between items. For instance, new ®xtures
or machine tooling may be required. This work addresses scheduling in parallel
machines with sequence-dependent set-up times and possibly non-zero ready
times. Section 2 of this paper contains a literature review, while section 3 contains
an integer programming model. The proposed heuristics are described in section 4
and the experimental design is described in section 5. Section 6 contains bounds.
Section 7 contains the experimental results and section 8 concludes.

2. Literature review
The problem of interest in this work is the Pjri; sij jCmax problem. McNaughton

(1959) provided an algorithm (as part of a constructive proof) to minimize makespan
on a number of parallel identical machines in the case of independent jobs with pre-
emption. Hu (1961) developed an algorithm to minimize the makespan for jobs with
a tree precedence constraint relationship and equal processing times, although he did
not allow pre-emption. An important result of Hu’s work is a labelling algorithm
that assists in partitioning the set of jobs in many later algorithms. Muntz and
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Co� man generalized Hu’s labelling algorithm. In Muntz and Co� man (1969), an
unequal processing time version of Hu’s labelling algorithm is combined with
McNaughton’s lower bound on the makespan for the case of two machines, arbi-
trary precedence constraints and pre-emption. Muntz and Co� man (1970) provided
a generalization of Hu’s labelling algorithm as one step in an optimal method under
the conditions of an assembly tree precedence structure. Later, Monma and Potts
(1989) determined that minimizing the makespan on two parallel machines with pre-
emptions and sequence-independent set-up times is NP-hard. In their problem, jobs
are divided into batches, which may be re-partitioned. Monma and Potts (1993) also
developed heuristics in the case of sequence-dependent set-upsÐin one of which the
batches may be re-partitioned while the other builds on McNaughton’s results.
However, the set-up times are only somewhat sequence-dependent; set-ups only
occur when switching from jobs in one batch to jobs in another batch, and the
time is the same regardless of whichever batch is next. Thus, from a job point of
view, set-ups are sequence-dependent with two possible values, while from a batch
point of view, set-ups are sequence independent.

The more relevant case of forbidding pre-emptions will be discussed in more
detail here. Graham (1969) developed the well-known Longest Processing Time
(LPT) heuristic and showed it to have a worst case bound of
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where m is the number of machines, !L is the LPT makespan and !O is the optimal
schedule length. Co� man and Sethi (1976) improved this bound to
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where 1 µ k µ jPij, and jPij is the number of jobs on machine i in the LPT schedule,
1 µ i µ m. Sahni (1976) and Babel et al. (1998) interpreted the P||Cm ax problem as an
m-partition of the jobs such that the largest partition size, measured by the summed
processing times of the jobs in that partition, is minimized. MULTI-FITÐa widely
utilized solution approach to this problemÐwas developed by Co� man et al. (1978).
MULTI-FIT packs equal-sized bins, e� ciently searching over bin sizes. Co� man
et al. also found bounds for MULTI-FIT that were improved upon by Friesen
(1984). Lee and Massey (1988) noted the strengths of both the LPT and MULTI-
FIT heuristics and suggested combining them, using LPT to provide an initial
solution and then MULTI-FIT as an improvement method. Blocher and Chand
(1991) also combined two approaches to this problem in order to realize a solution
within a desired percentage of optimal bounds, as well as developing improved
bounds on the LPT heuristic. Guignard (1993) used Lagrangean decomposition to
discover plant location and constrained 0±1 knapsack problems within the P||Cmax

problem. Punnen and Aneja (1995) developed lower bounds for the general minmax
combinatorial problem, of which P||Cmax is an application. Recently, genetic algor-
ithms have been applied to this problem (for example Hou et al. 1994, CorreÃ a et al.
1999). In these papers, a schedule is represented by a set of strings such that each
machine has a string. The string then contains the jobs assigned to that machine, in
the order to be processed. Min and Cheng (1998) combined genetic algorithms and
simulated annealing for the P||Cmax problem and found that combining the two
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balanced the better solutions of the genetic algorithm with longer running times of
the simulated annealing algorithm.

Set-up costs and/or times with special characteristics have been considered by
many researchers. Sometimes, the set-up times are modelled as set-up costs, which
are then minimized. The idea is that set-up costs and set-up times are related, so that
minimizing set-up costs will lead to minimized makespan. Parker et al. (1976) con-
sidered the problem with multiple parallel machine, sequence-dependent set-up costs
and an upper bound on the total workload of each machine where the total set-up
costs should be minimized. They modelled this situation as a vehicle routing prob-
lem. Withdrawing the workload bound constraint, Bitran and Gilbert (1990) devel-
oped a travelling salesman based heuristic to minimize total set-up costs on parallel
machines where the set-up costs are not only sequence-dependent but can be divided
into two classes that vary in magnitude by degrees. The classes generally correspond
to major set-up times, incurred, for example, when switching from one part family to
another, and minor set-up times, which accrue when switching between part types
within a family. The two-class division of set-up times has been continued, although
with the direct impact of set-up times being modelled as part of the makespan. Tang
(1990) considers a situation in which the set-up times depend only on the part type or
family being switched to (not being switched from) and uses an adaptation of the
MULTI-FIT method to minimize makespan. Moreover, there are no other restric-
tions on the set-up times. Rajgopal and Bidanda (1991) include sequence-dependent
set-up times that can be partitioned into two classes with the aim of minimizing
makespan. In this case, the major set-up times are identical for all families and the
minor set-up times are the same for all part types. Ovacik and Uzsoy (1993) devel-
oped worst-case error bounds in the presence of sequence-dependent set-up times
that were bounded by the processing times of the job set up, also noting that list
schedules need not be optimal for this case. While the inclusion of set-up times has
been addressed for these special cases (major and minor set-ups for switching
between or within families, set-up times bounded by processing times), restricting
sequence-dependent set-up times to satisfy only the triangle inequality has not been
examined.

Non-zero ready times of jobs seem not to have been discussed directly. By `ready
times’, we mean a time before which the job may not begin processing or, if set-ups
are required, a time before which a set-up time for the job may not begin. However,
the online version of the problem has been discussed recently (Bartal et al. 1995). In
the online problem, only the jobs that have already arrived are known and jobs must
be assigned to machines as they arrive; this is in contrast to the standard problem in
which all jobs to be scheduled are known a priori. Zhang (1997) studied the online
problem in the case of two parallel identical machines with one bu� er location
available to hold an unassigned job in anticipation of other jobs. However, the
online feature of these works is beyond that required in this work. The authors
are unaware of any direct discussion of the Pjri; sij jCmax problem.

Minimizing the makespan on a single machine with sequence-dependent set-up
times is analogous to the travelling salesman problem (TSP) (Baker 1974). Thus, the
single-machine makespan problem is NP-complete. The TSP is solved where the
distances between cities represent the sequence-dependent set-up times between
jobs. This results in a sequencing of jobs that yields a schedule when combined
with the processing times and sequence-dependent set-up times. Several heuristics
exist to generate solutions to the TSP, including the Doubling and Christo®des
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methods (Papadimitriou and Steiglitz 1988), insertion heuristics (Reinelt 1994,
Johnson and Papadimitriou 1985) and genetic algorithms (Holland 1975). Once
jobs are assigned to machines in the Pjsij jCmax problem, each machine can be
viewed as a single machine makespan problem, making these methods appropriate
for application to the parallel machine makespan problem.

3. Integer programming model
An integer programming formulation for the Pjri; sij jCmax problem is presented in

this section. First, we will de®ne the variables and then present the formulation with
a discussion of the constraints.

Let n be the number of jobs to be scheduled and m be the number of machines
where n ¶ m. We assume that machines are initially set-up for a nominal job 0 and
must ®nish set-up for a tear down job n ‡ 1. We have the following de®nitions.

pi processing time of job i, i ˆ 1; . . . ; n,
ri ready time of job i, i ˆ 1; . . . ; n,
sij sequence-dependent set-up time between job i and job j, i, j 2 f0; 1; . . . ; ng,

xij ˆ
1 if job i is scheduled immediately before job j

0 otherwise;
i; j 2 f0; 1; . . . ; ng;

»

ci completion time of job i, i ˆ 1; . . . ; n,
z makespan of the schedule.

min z …1†

s:t:
Xn

jˆ1

xoj ˆ m …2†

Xn‡1

jˆ1

xij ˆ 1 i ˆ 1; . . . ; n …3†

Xn

iˆ0

xij ˆ 1 j ˆ 1; . . . ; n …4†

c0 ˆ 0 …5†

cj ¶ pj ‡
Xn

iˆ0

sij…sij ‡ ci† j ˆ 1; . . . ; n …6†

cj ¶ rj ‡ pj ‡
Xn

iˆ0

xijsij j ˆ 1; . . . ; n …7†

z ¶ c; j ˆ 1; . . . ; n …8†
X

i2S

X

j=2S

xij ¶ 1 for all proper subsets S ofN ˆ f0; 1; . . . ; n; n ‡ 1g …9†

xij 2 f0; 1g i; j 2 f0; 1; . . . ; n; n ‡ 1g …10†

xij ˆ 0 i ˆ j

cj ¶ 0 j ˆ 0; 1; . . . ; n: …11†

3750 M. E. Kurz and R. G. Askin



Equation (1) de®nes the objective function, which is to minimize the makespan z.
We assume set-up times satisfy some su� cient condition to ensure that an optimal
solution will always exist that utilizes all m machines. For instance,
s0j µ mini 6ˆ0…pi ‡ sij†8j and

pj ‡ s0j µ

X

i 6ˆj

³
pi ‡ min

k
ski

´

m ¡ 1

are both su� cient. Constraint set (2) ensures that m machines are scheduled.
Constraint sets (3) and (4) ensure that each job is scheduled on one and only one
machine. Constraint (5) de®nes the completion time of the non-existent job 0 so that
the recursive constraint sets (6) and (7) can be used to ®nd completion times of the
jobs. Constraint sets (6) and (7) also ensure that jobs only begin processing after both
the previous job and the required set-up have been completed. Note that set-up for
the current job cannot begin until both the current job is available and the preceding
job has completed. Constraint set (8) links the decision variables ci and z. Constraint
set (9) is a cycle preventing constraint set. Constraint sets (10) and (11) provide limits
on the decision variables. This formulation incorporates the PjjCmax problem, which
is a case of the Pjri; sij jCmax problem where ri ˆ sij ˆ 0 for all i and j. Since the single
machine makespan problem is NP-complete, the PjjCmax and Pjri; sij jCmax problems
are NP-complete as well.

Figure 1 shows a graphical model of a solution to the Pjri; sij jCmax problem. In
this example, m ˆ 3. Each `line’ of the graph represents the ordering of jobs on a
machine, beginning with job 0 and ending with job n ‡ 1 on each machine. Note that
once jobs are assigned to machines, each machine can be considered a TSP.

4. Heuristics
In this section, we describe several heuristics prepared for the problem Pjsij jCmax .

Note that heuristics 3 and 4 can also be applied to the Pjri; sij jCmax problem as well
with no modi®cations.
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4.1. Heuristic 1: Slicing heuristic (SL)
The ®rst idea can be succinctly described as `Cutting up a single machine

solution’. The goal is to use a quick method to ®nd a sequence for a single machine
problem and quickly slice it up into m pieces. The general algorithm can be described
as follows:

Step 1. Find a solution to the single machine problem with makespan M.
Step 2. Break the single machine sequence into m groups, one for each machine.

A target makespan for each machine is calculated as M/m. Each machine starts with
job 0. Jobs are then taken from the single machine solution and added to the current
machine until the schedule length of that machine exceeds M/m. At that time, the
current machine is `closed’ and the next machine is `opened’. This continues until all
jobs have been assigned to a machine. The ®nal job on a machine is the last real job,
not the tear-down job. This job number can be saved and is considered the current
set-up for the machine.

Important considerations include ensuring that all m machines are used, and
what to do if this does not happen (or if one machine is used much less than another)
and ensuring that all jobs are assigned to a machine. At this time, if m 0 < m
machines are used, the target is reset to m 0=m times the original target. If not all
jobs are assigned to machines then the target is reset to (number of jobs to be
scheduled/number of placed jobs) times the original target. Let j be the index of
the current job being examined.

The implemented heuristic is as follows.

Step 1. Use the Doubling Method to solve a TSP and ®nd a solution to the single
machine problem. Call the resultant makespan M. The solution gives the job
order to be used in step 0, starting at the ®rst `real’ job. That is, skip job 0,
which indicates the start of the sequence.

Step 2. Set an approximate target t ˆ M=m.
Step 3. Let mc ˆ 1. Schedule job 0 on this machine. Let j ˆ 1.
Step 4. If all the jobs have been scheduled, go to step 0.
Step 5. If machine number mc has a schedule length > t, place job j on machine

number mc and let j ˆ j ‡ 1. Go to step 0.
Step 6. If machine number mc has a schedule length ¶ t, close machine number mc.

Let mc ˆ mc ‡ 1. Schedule job 0 on this machine. Go to step 0.
Step 7. If the number of machines used is less than that available (mc < m), let

tnew ˆ told…mc=m†. Unschedule all the jobs and go to step 0.
Step 8. If more than m machines were used (mc > m), let k be the number of jobs

placed on the ®rst m machines. Let tnew ˆ told …n=k†. Unschedule all the jobs
and go to step 0.

Step 9. If m machines were used, DONE.

4.2. Heuristic 2: Multiple MULTI-FIT heuristic (MMF)
The second idea to be explored is an adaptation of the MULTI-FIT algorithm by

Co� man et al. (1978) . While MULTI-FIT does not consider sequence-dependent set-
up times, the set-up times can be accounted for by integrating their values into the
processing times. The obvious estimates are the minimum, average and maximum
set-up time. Following an initial empirical study, it was decided to use the minimum
set-up time. MULTI-FIT can then be performed using the modi®ed processing times
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p 0
i ˆ pi ‡ minj…sij). Once jobs have been assigned to machines, the true processing

and set-up times can be used. The TSP can then be used on each machine’s sequence
to see if a better ordering of those jobs can be found. Otherwise, the modi®ed
MULTI-FIT sequence is used.

Let k be the maximum number of iterations. The following describes the heur-
istic.

Step 1. Create the modi®ed processing times.
Step 2. Order the jobs in non-increasing order of the modi®ed processing times.
Step 3. Calculate CL ˆ max…1=m

P
pi; maxi p 0

i †.
Step 4. Calculate CU ˆ max…2=m

P
p 0

i ; maxi p 0
i †:

Step 5. I ˆ 1.
Step 6. If I > k, STOP. Go to step 0.

Else, C ˆ …CL ‡ CU†=2.
Step 7. Perform the First Fit Decreasing heuristic with the modi®ed processing

times. Let c be the number of machines required.
If c µ m, let CU ˆ C and CL ˆ CL.
Else, let CU ˆ CU and CL ˆ C.
Let I ˆ I ‡ 1, go to step 0.

Step 8. For each machine, solve the TSP with the true processing and set-up times.
If the makespan on that machine is reduced, use the TSP ordering.

Step 9. Compute the actual makespan.

4.3. Heuristic 3: Multiple insertion heuristic (MI)
The third idea is a multiple machine adaptation of the Insertion Heuristic for

TSP. The Insertion Heuristic for the TSP is one in which set-up times are accounted
for by integrating their values into the processing times. As with MMF, we will use
the minimum set-up time and the modi®ed processing times are found using the
de®nition p 0

i ˆ pi ‡ minj…sij†. The Insertion Heuristic can then be performed using
these modi®ed processing times. Once jobs have been assigned to machines, the true
processing and set-up times can be used.

MI has the following steps:

Step 1. Create the modi®ed processing times.
Step 2. Order the jobs in non-increasing order of the modi®ed processing times.
Step 3. Examine every job in the order found in step 0. For each job i,

Step 3(a) insert job i into every position on each machine
Step 3(b) calculate the true partial makespan for each position of job i
Step 3(c) place job i in the position on the machine with the lowest resultant

partial makespan using the actual set-up times.

4.4. Heuristic 4: Genetic algorithm (GA)
Genetic algorithms (GAs) have been applied to many combinatorial problems

(Holland 1975, Davis and Streenstrup 1987). In basic genetic algorithms, a number
of problem solutions (chromosomes) are generated, representing a population. They
are evaluated based on how well they solve the problem of interest. The quality of
each chromosome is measured in some way called the `®tness’ of the chromosome. In
each generation, chromosomes can change in random ways, analogous to mutations
in the physical world. A new generation is generated out of the old generation
through a reproduction scheme that allows `®tter’ chromosomes to reproduce
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more often but which does not eliminate the chances that `poor’ chromosomes will
reproduce as well. Designing GAs requires consideration of ®ve primary components

(Davis and Streenstrup 1987):

(1) a chromosomal representation of solutions to the problem;
(2) genetic operators that change the composition of the chromosomes;
(3) a method to initialize a population;
(4) an evaluation function that represents how well the individual solutions

function in the environment, called their `®tness’;
(5) the parameters that are required in order to implement the above compon-

ents, including population size, number of generations that will be allowed,
and stopping criteria.

The chromosomal representation of the scheduling information can take many

forms and in¯uence the types of genetic operators. One option for the chromosomal

representation is an array indexed by the job number where each value in the array

corresponds to the machine to which the job is assigned. For example, the chromo-

some [2, 3, 1, 3, 2, 1] means that machine 1 has jobs 3 and 6, machine 2 has jobs 1 and

5, and machine 3 has jobs 2 and 4. This kind of structure is used by Gu and Chung
(1999) for assigning gates to ¯ights in airports. In their application, gates can be

repeated but the ordering of ¯ights is not part of the problem, since the ¯ight

schedule, even if changing due to delay, is an input and not an output. In our

application, however, the job order is relevant. The job order could be found by a

TSP for each machine. With this representation, mutations consist of changing the

assigned machine for one or more jobs. Each job in each chromosome in the current

population is eligible for crossover, and any number of jobs can be selected for
crossover. Clearly, these operations could result in no change in the schedule, redu-

cing the e� ective probabilities of crossover and mutation. Sivrikaya-Serifoglu and

Ulusoy (1999) use the job and machine, in that order, as a gene. The jobs are

processed on the machines in the order in which they appear in the chromosome.

Their example chromosome [4-1, 2-1, 5-2, 1-1, 3-2] means that machine 1 processes

jobs 4, 2, and 1 in that order and machine 2 processes jobs 5 and 3. With this
representation, a swap mutation involves selecting two jobs in a chromosome in

the current population and exchanging them. This may result in a di� erent job

ordering on up to two machines. A bit mutation involves selecting a job and

randomly assigning a machine to that job. This representation and types of mutation

could also result in no change to the schedule.

We choose to use just the machine information in the gene and then generate
solutions for m TSPs through the Doubling Method. If we spend a lot of time solving

TSPs each iteration, then, and only then, would we include the job order in the gene

information. Based on initial experimentation, using TSPs has been found to be

su� cient.

The population is initialized randomly, so that every job has an equally likely
chance of starting out on any one machine. The ®tness function is …Cmax†¡1.

The important parameters for the genetic algorithm are as follows:

POPSIZE the constant number of chromosomes in the population,

PROBMUTATE the probability that a particular gene undergoes mutation,
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PROBCROSS the probability that a particular chromosome is chosen for
crossover,

NUMITERBASE the value, which when multiplied by n, yields the number of

iterations that will de®ne a stopping criterion,

EPSILON the di� erence between two successive incumbent solutions

that will de®ne a second stopping criterion.

The general structure for the genetic algorithm implemented here follows. Each step
is described in more detail in the corresponding ®gure.

Step 1. Initialize a population of chromosomes. See ®gure 2.

Step 2. Evaluate the chromosomes in the population to get each chromosome’s

®tness. See ®gure 3.

Step 3. Find the new incumbent chromosome and consider stopping. If do not stop,

go to step 4. See ®gure 4.

Step 4. Reproduce to create the next generation, allowing chromosomes with higher
®tness values to have higher chances of reproduction. See ®gure 5.

Step 5. Apply crossover to generation g. See ®gure 6.

Step 6. Apply mutation to generation g. See ®gure 7.

Step 7. Go to step 2.

3755Heuristic scheduling of parallel machines

Initialization 

Set the generation (iteration) number g=0. 

For i=1 to POPSIZE, 

 For j=1 to n, 

  Let Generation{g}.PopMember{i}.gene{j} be a randomly generated integer   

   between 1 and m inclusive. 

Best.fitness=0, OldBest.fitness=0

Figure 2. Population initialization.

Chromosome evaluation 

For i=1 to POPSIZE, 

 For k=1 to m, 

  Select the set of jobs kJ  such that Generation{g}.PopMember{i}.gene{j}=k for  

   kj JÎ  

  Use the Doubling Method for the jobs kJ  to find an order for machine k 

 Find the makespan Cmax for population member i 

 Let the fitness be Generation{g}.PopMember{i}.fitness=(Cmax)-1

Figure 3. Chromosome evaluation.



The Genetic Algorithm has several parameters that need to be tuned. After initial
experimentation, the following parameters were found: POPSIZE ˆ 20,
PROBMUTATE ˆ 0.5, PROBCROSS ˆ 0.25, NUMITERBASE ˆ 20,
EPSILON ˆ 0.000001.

4.5. Discussion of heuristics
This problem has the characteristics of both parallel machine scheduling and the

travelling salesman problem. The heuristics developed in this section draw their
motivation from methods that have proven e� ective for these two separate problems.
The SL and MI procedures derive from the TSP. Both are then modi®ed for parallel

3756 M. E. Kurz and R. G. Askin

Find new incumbent, consider stopping 

NewBest = population member in generation g with the maximum fitness. 

If (NewBest.fitness>Best.fitness), 

 Copy Best to OldBest, Copy NewBest to Best 

 If (Best.fitness –  OldBest.fitness < EPSILON), 

  The Best schedule is represented by Best:  STOP 

If (g= NUMITERBASE*n), 

 The Best schedule is represented by Best:  STOP 

Else g=g+1 and go to step 4.

Figure 4. Incumbent and stopping criteria.

Reproduction 

TotalFit=0 

For i=1 to POPSIZE, 

 TotalFit=TotalFit + Generation{g-1}.PopMember{i}.fitness 

Sort the population members in generation g-1 in decreasing order of fitness.  Let (i) indicate the 

 ith element. 

Generation{g-1}.PopMember{(1)}.ub= Generation{g-1}.PopMember{(1)}.fitness / TotalFit 

For i=2 to POPSIZE, 

 Generation{g-1}.PopMember{(i)}.ub= Generation{g-1}.PopMember{(i-1)}.ub +   

  Generation{g-1}.PopMember{(i)}.fitness / TotalFit 

For i=1 to POPSIZE, 

 Generate a random real number s between 0 and 1. 

 Find the population member (l) such that Generation{g-1}.PopMember{(l-1)}.ub <  

  s £  Generation{g-1}.PopMember{(l)}.ub 

 Copy Generation{g-1}.PopMember{(l)} to Generation{g}.PopMember{i}

  
Figure 5. Reproduction.
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Crossover 

For i=1 to POPSIZE,  

 NumToCross=0 

 For j=1 to n, 

  Generate a random real number s between 0 and 1. 

  If (s<PROBCROSS) 

   Add j to the set of jobs to be crossed in population member i, iC  

   NumToCross=NumToCross+1 

 If NumToCross is odd, 

  Generate a random real number s between 0 and 1. 

  If s<0.5, 

   Generate a random integer s between 1 and NumToCross inclusive. 

   Remove job (s) from iC  

   NumToCross=NumToCross-1 

  Else, while NumToCross is odd 

   Generate a random integer s between 1 and n inclusive until is CÏ  

   Add job s to iC  

   NumToCross=NumToCross+1 

 CrossPairs=NumToCross/2 

 For j=1 to CrossPairs, 

  Generate two different random integers s and t between 1 and NumToCross  

   inclusive. 

  Swap Generation{g}.PopMember{i}.gene{(s)} and      

   Generation{g}.PopMember{i}.gene{(t)} 

  Remove jobs (s) and (t) from iC  

  NumToCross=NumToCross-2

  

Figure 6. Crossover.

Mutation 

For i=1 to POPSIZE,  

 For j=1 to n, 

  Generate a random real number s between 0 and 1. 

  If (s<PROBMUTATE) 

   Let Generation{g}.PopMember{i}.gene{j} be a randomly generated integer  

    between 1 and m inclusive.

Figure 7. Mutation.



machines. MMF is adapted from parallel processor solution procedures but with an
added step to address sequence-dependent set-ups. The genetic algorithm attempts to
consider equally, both aspects of the problem.

5. Experimental design
An experiment was performed to evaluate the heuristics for problem

Pjri; sij jCmax. The experimental runs contain on the order of 100 jobs to be sched-
uled on up to 10 machines. Processing times and sequence-dependent set-up times
are chosen randomly from a uniform distribution as rational values with two decimal
places. We ®rst describe the experimental set-up.

5.1. Ready times
Each value ri is either the zero vector (all jobs available at time 0) or each element

is drawn from a uniform distribution with bounds a and b. Our intent is to control
the standard deviation ¼r relative to the mean. In setting ready times we want to
emulate the arrival of jobs. The lower bound is set to zero. The upper bound should
be the expected makespan of the (for now non-existent) preceding stageÐthe
expected completion time for the last job through that stage. This would, of
course, depend on the structure of the preceding stage. Assume that the preceding
stage has essentially the same structure as the current stage. The preceding stage’s
makespan can be roughly estimated by examining the average number of jobs per
machine (nm), the mean of the processing time (·p) and the mean of the set-up time
(·s). Every job must be processed and set-up. The makespan can be estimated by
nm…·p ‡ ·s). Jobs arrive to the current stage as soon as the ®rst job is done, which
happens approximately at time ·p ‡ ·s. Thus, jobs arrive at the current stage over a
time period with length nm…·p ‡ ·s† ¡ …·p ‡ ·s† ˆ …nm ¡ 1†…·p ‡ ·s†. Note that one
job must arrive at time 0. Since the length is an estimate only, it is not necessary to
force a job to arrive at time (nm ¡ 1†…·p ‡ ·s). The ready times are thus generated
from a uniform distribution with lower bound zero and upper bound
(nm ¡ 1†…·p ‡ ·s), transformed so that one job arrives at time 0.

5.2. Set-up times
Each value sij ; i 6ˆ j is drawn from a uniform distribution with standard deviation

¼s and the values sii are set to a large value. While set-up times always satisfy the
triangle inequality, they may either be symmetric or asymmetric. Set-up times that
satisfy the triangle inequality are desired so that the direct path between two jobs is
always no longer than any non-direct path between two jobs. Moreover, the SL
heuristic requires the triangle inequality. If a matrix is generated with two values
lower than half the largest value in the matrix, then the triangle inequality may not
hold for that matrix. To prevent this, the restriction that the lower bound must be at
least half the upper bound has been introduced. Let a be the lower bound and b be
the upper bound. Then, for uniformly distributed set-ups, ·s ˆ a ‡ b=2 and

¼2
s ˆ …b ¡ a†2=12. Solving these two equations yields a ˆ ·s ¡

���
3

p
¼s and

b ˆ ·s ‡
���
3

p
¼t. If the triangle inequality is to hold, then 2a ¶ b and so

¼s µ …1=3
���
3

p
†·z ˆ

���
3

p
·s=9. Thus, only the mean must be speci®ed. We select

·s ˆ 450 so that ¼s is rational.
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5.3. Processing times
Each value pi is drawn from a uniform distribution with standard deviation ¼s.

However, the range of the processing times must correspond to the set-up times in

some way. Following Morris and Tersine (1990), the mean of the processing times

can take on one of two values: ·p ˆ ·s or ·p ˆ 10·s. The range of processing times is

set at either ‰0:94·p; 1:06·pŠ or ‰0:4·p; 1:6·pŠ.

5.4. Place-holder jobs

Two jobs must be added for implementation reasons. Jobs 0 and n ‡ 1 are the

place holder jobs. These jobs are basically markers for the beginning and ending of

the sequence of jobs. However, they also indicate the initial machine set-up and

required ending state. If the start and end states of the machines are known, then

a job sequence can be found including these details. If the required start and end

states are not known, then the place holder jobs can provide substitute information.
With the addition of these two jobs, there are n ‡ 2 jobs, numbered from 0 to n ‡ 1.

Their ready times are zero and their processing times are zero. Their set-up times are

found using the equations s0i ˆ max8j 6ˆifsjig and si;n‡1 ˆ s0i. The maximum function

was chosen so that the makespan would not be under estimated due to the lack of

knowledge regarding the required initial and ending machine states.

5.5. Problem data characterization

Problem data can now be characterized by seven factors: ready times, range of

processing times, mean of processing times, variability of set-up times, set-up times

structure, the number of machines and average number of jobs per machine. Each of

these factors is tested at two levels: low and high. The meanings of these levels are
shown in table 1.

Since each factor has two levels, there are 27 ˆ 128 possible experimental designs.

Ten data sets for each of these cases have been generated.
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Factor Low High

Ready times r ˆ 0 r ¹ Unif…0; …nm ¡ 1†…·p ‡ ·s††

Range of processing times p ¹ Unif…0:94·p; 1:06·p† p ¹ Unif…0:4·p; 1:6·p†

Mean of processing times ·p ˆ ·s ·p ˆ 10·s

Set-up times structure Symmetric Asymmetric

Std dev of set-up times

S ¹Unif…·s ¡
���
3

p
¼s; ·s‡

���
3

p
¼s† ¼s ˆ

1

2

1:5·s

9
¼s ˆ

1:5·s

9·s ˆ 450

Number of machines 2 10

Ave. number of jobs per 3 10
machine ˆ nm

Table 1. Factor levels.



6. Identifying bounds
In this section, we shall characterize problem solutions. Lower bounds are devel-

oped as well as a technique for ®nding optimal solutions for certain problems. We
conclude this section with a discussion of the error introduced by using asymmetric
set-up time matrices.

6.1. Lower bounds
A lower bound on the makespan can be found by looking at the minimum pre-

emptive schedule makespan (McNaughton 1959). We have n jobs that need to be
scheduled, each of which must be processed and set-up. The minimum set-up time
for each job is the lower bound of the set-up time distribution, which is
LBS ˆ ·s ¡

���
3

p
¼s. The minimum processing time is the lower bound of the pro-

cessing time distribution LBP. Thus, a lower bound on the makespan is
LB

…1†
Cmax

ˆ n…LBS ‡ LBP†=m.
Especially in cases with a high Range of Processing Times, the general pre-emp-

tive lower bound can be very poor. We use a pre-emptive type lower bound for each
of the individual data sets using the actual data. Clearly, a job cannot begin until it is
ready. Another lower bound on the makespan is the largest ready time plus its
processing time. We shall use the larger of the pre-emptive type data-dependent
lower bound and the largest ready time plus processing time.

A data dependent lower bound for each data set is

LB…2†
Cmax

ˆ max
1

m

Xn

iˆ1

pi ‡ min
j2f1;...;ng

…sij†
µ ¶( )

; max
i

ri ‡ min
j2…1;...;ng

…sij† ‡ pi

» ¼Á !

:

6.2. Scheduling computationa l complexity
The optimal solution can be found for the case of m ˆ 2. Consider the case with

six jobs. The ®rst machine could conceivably have any number from 1 to 5 jobs
assigned to it. Since machines are identical and indistinguishable, assigning one job
to machine 1 and ®ve jobs to machine 2 is equivalent to assigning ®ve jobs to
machine 1 and one job to machine 2. For this reason, machine 1 can have one,
two or three jobs and machine 2 can have ®ve, four or three jobs. Examine these
con®gurations of assignments:

(1) machine 1 has one job, machine 2 has ®ve jobs in the TSP order;
(2) machine 1 has two jobs in the TSP order, machine 2 has four jobs in the TSP

order;
(3) machine 1 has three jobs in the TSP order, machine 2 has three jobs in the

TSP order.

Finding the best makespan over all the con®guration types will yield the best sche-
dule for two machines and six jobs to minimize makespan. The same argument
follows for the cases with two machines and 20 jobs. However, the number of
di� erent con®gurations is much larger.

The number of con®gurations in the six-jobs case is small enough to enable
enumeration to ®nd the optimal solution, while the problem with 20 jobs is much
too large to enable ®nding the optimal solution. Consider the cases where only the
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10,10 con®gurations need to be examined. First, there are
20

10

³ ´
ways to choose the

ten jobs to go on the ®rst machine. Since there is no di� erence between the machines,

this can be reduced to
20

10

³ ´
1

2
. Then, the TSP solution for each of the machine

assignments must be found. Since there are 10! ways to order each machine, there are
20

10

³ ´
1

2
10!10! ˆ 20!

2
º 1:216 £ 1018 possibilities. Since the jobs could also be distrib-

uted in the 9,11 con®guration, this con®guration would need to be examined as well.
This continues for all the required con®gurations. Thus, even if we could use data
based bounds to reduce the number of con®gurations to be tested, enumeration
would still not be feasible.

If there are more than two machines, it is much more di� cult to ®nd the optimal
makespan. Consider 30 jobs and 10 machines, under the assumption that three
jobs will be on each machine in the optimal solution. The ®rst machine could have

30

3

³ ´
di� erent sets of three jobs assigned to it. The second machine could have

27

3

³ ´

di� erent sets of three jobs assigned to it and so on. The TSP solution for each of
these machines must then be found. This results in

30

3

³ ´
27

3

³ ´
24

3

³ ´
¢ ¢ ¢ 6

3

³ ´
3

3

³ ´
…3!†10 ˆ 30!

possibilities. Moreover, the assumption that the jobs would be evenly distributed
among machines is ¯awed. The jobs could be distributed among the machines in
many possible con®gurations, each of which would have to be considered. Due to
this explosion of scenarios that would need to be examined, the optimal solution has
only been found for the two-machine, average three jobs per machine cases.

6.3. Symmetric matrix ceiling
In our intended application, set-up time matrices could be asymmetric. Portions

of the heuristics assume symmetric matrices. However, if the set-up time matrix is
asymmetric, it can be replaced by a symmetric matrix with a known error. Consider
the following de®nitions. Let M* be the length of the TSP tour of the asymmetric
set-up time matrix. Let M*s be the length of the TSP tour of the asymmetric matrix’s
symmetric replacement M, called the Symmetric Matrix Ceiling. We de®ne
M ˆ …Mij† where Mij ˆ max…sij ; sji† and Eij ˆ Mij ¡ sij .

Theorem:

M*S µ M* ‡ min
X

i

max
j

fEijg;
X

j

max
i

fEijg
Á !

:

Proof
Replace sij and sji by Mij . Each value Eij is either 0 or positive. Consider a feasible
TSP solution to M. This solution contains exactly one element from each row and
column. Either element …i; j† has Mij ˆ sij or Mij ˆ sij ‡ Eij . Let Xij ˆ 1 if element
(i; j) is in the TSP solution and Xij ˆ 0 otherwise. A feasible TSP solution on M then
has value
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M*S ˆ
X

i

X

j

XijMij ˆ
X

i

X

j

Xij max…sij ; sji†

Note that
X

i

X

j

Xij max…sij ; sji† µ M* ‡
X

i

max
j

fEijg

and
X

i

X

j

Xij max…sij ; sji† µ M* ‡
X

j

max
i

fEijg:

7. Experimental results
7.1. No ready times
7.1.1. Comparison to data dependent lower bounds

An ANOVA was performed to compare the four heuristics for the no ready time
case. The heuristic used was found to be signi®cant at the 0.001 level (F statistic =
836.382 with three degrees of freedom, 2304 error degrees of freedom). MI proved to
be the best. Several tables with additional data have been compiled to support this
conclusion. The average values for the makespan divided by the data dependent
lower bounds for each heuristic are summarized in ®gure 8. Each data point is the
average over all cases with the shown levels for Range of Processing Times, Standard
Deviation of Set-up Times, Number of Machines and Average Number of Jobs.
Note that for many cases, GA outperforms MI even though the ANOVA indicated
that MI is better overall. In general, GA performs well in cases with the low level for
Number of Machines and poorly in cases with the high level for Number of
Machines. Figure 9 shows the number of times each heuristic had the lowest make-
span. Note that the sums of the bars for one case may be more than 40 because the
heuristics could have found the same solution. However, each bar can range between
0 and 40. We see that, while GA could be considered competitive in the 6 and 20 job
cases, MI dominates in the 30 and 100 job cases. Out of 640 trails, MI has the lowest
makespan of the four heuristics 446 times while GA has the lowest makespan only
207 times.
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Average Makespan (MS) / Data Dependent Lower Bounds (DDLB)
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Figure 8. Average makespan divided by data dependent lower boundsÐno ready times.



7.1.2. Comparison to optimal

The ratio between the makespan and the optimal solution for cases with two

machines and six jobs has been summarized in ®gure 10. Each data point is the

average over all cases with the shown levels for Range of Processing Times, Mean
of Processing Times, Set-up Times Structure and Standard Deviation of Set-up

Times; the Number of Machines and Average Number of Jobs factors are both

held at the low level. GA has the lowest ratio in all but one case. The number of

times each heuristic achieved the optimal makespan, for cases with two machines

and three jobs, has been summarized in ®gure 11. MI achieves the optimal makespan

37 times in the 160 data sets examined. GA achieves the optimal makespan 78 times.

Moreover, SL only achieves the optimal makespan six times and MMF only achieves
the optimal makespan twice. The average and maximum ratio of achieved makespan
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Figure 9. Number of times achieve minimum vlaueÐno ready times.

Average Makespan (MS) / Optimal (Opt)
No Ready Times, 2 Machines, 6 Jobs
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Figure 10. Average makespan divided by optimalÐno ready times, two machines, six jobs.



to optimal makespan for cases with two machines and three jobs has been summar-

ized in table 2. GA has the lowest ratio at 1.047, followed by MI at 1.079. In

comparison to the optimal solutions, GA appears preferable.
However, the added element of running time must be considered also. Each

heuristic was written in C, compiled with Microsoft Visual C ‡ ‡ and run on a

PC with a Pentium II processor and 64 MB RAM. The running times were found

using the clock( ) function and the averages over the data ®les with 6, 20, 30 and 100

jobs have been tabulated in table 3. If the average time was less than 0.01 seconds, a

dash has been used. Again, MI performed at least as well as the other heuristics in all

cases on average. GA performed horribly on this measure, taking 100 to 1000 times
longer than the next slowest alternative. In the 30 and 100 job cases, these long

running times cannot be considered in light of the quality of the solution, because

the solutions were not very good.
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Number of Times Each Heuristic was Optimal - No Ready Times
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Figure 11. Number of times achieve optimal valueÐno ready times, twomahcines, six jobs.

Heuristic Average Maximum

SL 1.063 1.621
MMF 1.036 1.152
MI 1.009 1.079
GA 1.003 1.047

Table 2. Makespan optimalÐno ready times.

Heuristic LL LH HL HH

SL Ð Ð Ð 1.73
MMF Ð Ð Ð 39.12
MI 0.01 Ð Ð 49.75
GA 0.95 0.09 0.08 1206.32

Table 3. Running timesÐno ready times.



SL has a fundamental ¯aw. It ignores the modi®ed set-up times when the
sequence is sliced. In addition, the discrete time aspect of the problem is ignored
when setting candidate makespans. Thus, a job that would increase makespan by a
small may be forced to a new machine causing problems later on. Moreover, despite
the iterative attempts to eliminate the problem, there is nothing in SL that guarantees
one machine will not have all the jobs in the schedule.

Using many di� erent measures, MI has been found to be best for the types of
problems with no ready times. Note that MI explicitly considers both the m
machines and set-up time interactions when placing jobs. While GA is attractive
in some instances, its overall performance, especially in light of its running time, is
inferior to MI.

7.2. Ready times
7.2.1. Comparison with data dependent lower bounds

An ANOVA was performed to compare the two heuristics for the ready time
case. Once again, the heuristic used was found to be signi®cant at the 0.001 level
(F statistic ˆ 1139.089 with one degree of freedom, 1278 error degrees of freedom)
and MI to be the best. Several tables have been compiled to support this conclusion.
The average value for the makespan divided by the data dependent lower bounds for
each heuristic has been summarized in ®gure 12. Each data point is the average over
all cases with the shown levels for Range of Processing Times, Standard Deviation of
Set-up Times, Number of Machines and Average Number of Jobs. MI outperforms
GA in every data point. Figure 13 shows the number of times each heuristic had the
lowest makespan. We see that while GA ®nds lower schedules in some cases, this
only occurs in cases with six jobs. Out of 640 trails, MI has the lowest makespan 610
times while GA has the lowest makespan only 30 times.

In comparison with the data dependent lower bounds, MI is preferable.

7.2.2. Comparison with optimal
The ratio between the makespan and the optimal solution for cases with two

machines and six jobs has been summarized in ®gure 14. MI has the lowest ratio in
all cases. The number of times each heuristic achieved the optimal makespan, for
cases with two machines and six jobs, has been summarized in ®gure 15. MI achieves
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Number of Times Each Heuristic was Minimum - Ready Times
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the optimal makespan 45 times in the 160 data sets examined. GA achieves the
optimal makespan 17 times. The average and maximum ratio of achieved makespan
to optimal makespan for cases with two machines and three jobs has been summar-
ized in table 4. GA has the higher ratio at 1.408 compared to MI at 1.232. In
comparison to the optimal solutions, the MI is preferable.

Using many di� erent measures, MI has been found to be best for the types of
problems with ready times.

8. Conclusions
We have examined the problem of scheduling sequence-dependent jobs on iden-

tical parallel processors. Ready times were allowed. This is seen as a building block
to a multistage environment and replicates actual job availability in a dynamic
operation. Using many di� erent measures, MI has been found to be best for the
types of problems discussed here. While GA is attractive in some instances, its over-
all performance, especially in light of its running time, is inferior to MI. Some of the
worst performances of GA result from the parameter values. The amount of time
required to ®nd appropriate parameter values and achieve good solutions, even in
the six-job case, is so large as to limit perhaps the value of re®ning the GA, as
implemented here, further. However, other variants of genetic algorithms, such as
the Random Keys Genetic Algorithm by Bean (1994) may respond better to the
problem. Further work in this area may also incorporate due dates.
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