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Abstract

This paper examines scheduling in flexible flow lines with sequence-dependent setup times to minimize makespan.

This type of manufacturing environment is found in industries such as printed circuit board and automobile manu-

facture. An integer program that incorporates these aspects of the problem is formulated and discussed. Because of the

difficulty in solving the IP directly, several heuristics are developed, based on greedy methods, flow line methods, the

Insertion Heuristic for the Traveling Salesman Problem and the Random Keys Genetic Algorithm. Problem data is

generated in order to evaluate the heuristics. The characteristics are chosen to reflect those used by previous researchers.

A lower bound has been created in order to evaluate the heuristics, and is itself evaluated. An application of the

Random Keys Genetic Algorithm is found to be very effective for the problems examined. Conclusions are then drawn

and areas for future research are identified.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Traditional manufacturing systems have taken many general forms. In increasingly complex manufac-

turing environments, more complex manufacturing systems have been created in order to address such

factors as limited capacity and complicated process plans. For example, the semiconductor industry uses re-

entrant flow lines, in which multiple machines may exist at each stage and jobs revisit previous stages many
times in a cyclic manner. The printed circuit board and automobile industries make use of flow lines with

multiple machines at some stages and allow jobs to skip stages (Piramuthu et al., 1994; Agnetis et al., 1997).

Moreover, these industries encounter sequence-dependent setup times which result in even more difficult

scheduling problems. The scheduling objective in such industries may vary. Due date related criteria may be
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important. The makespan criterion has been used by many researchers and has been selected for this
research. Scheduling to minimize makespan in flow lines with multiple parallel machines, jobs that may skip

stages, and sequence-dependent setup times is the focus of this paper. This kind of manufacturing envi-

ronment introduces new difficulties that scheduling in simple flow lines, for example, did not address.

To begin, we define the scope of the problem considered in this research. We use the term ‘‘hybrid’’ flow

line to indicate flow lines with the presence of multiple identical machines in parallel at some or all stages,

though jobs still require processing at exactly one machine per stage. A flexible flow line is a hybrid or

(regular) flow line where at least one job need not be processed on any machines in at least one stage. That

is, every job must be processed on at most one machine per stage. A flexible flow line consists of several
stages in series. A job may not revisit a stage that it has already visited. Each stage has at least one machine,

and at least one stage must have more than one machine. At this point, this structure may be considered a

hybrid flow line or a flow line with multiple machines. However, the feature that makes our application a

flexible flow line is that jobs may skip stages. This could occur in an industry in which some jobs do not

require an operation. This situation exists in the printed circuit board manufacturing line modeled by

Wittrock (1985, 1988). Three of the thirteen part types required processing on only two of the three stages.

The potential variants of the basic flexible flow line described above that can be studied are nearly lim-

itless. Now we shall describe the particular features of this research. All data in this problem are known
deterministically when scheduling is undertaken. Machines are available at all times, with no breakdowns or

scheduled or unscheduled maintenance. Jobs are always processed without error. Job processing cannot be

interrupted (no preemption is allowed) and jobs have no associated priority values. Infinite buffers exist

between stages and before the first stage and after the last stage; machines cannot be blocked because the

current job has nowhere to go. There is no travel time between stages; jobs are available for processing at a

stage immediately after completing processing at the previous stage. The ready time for each job is the larger

of 0 and the time it completes processing on the previous stage. Machines in parallel are identical in ca-

pability and processing rate. A key characteristic of this research topic is that non-anticipatory sequence-
dependent setup times exist between jobs at each stage. After completing processing of one job and before

beginning processing of the next job, some sort of setup must be performed. The length of time required to

do the setup depends on both the prior and the current job to be processed; that is, the setup times are

sequence-dependent. Piramuthu et al. (1994) incorporate sequence-dependent setup times in their model of

an actual printed circuit board line. Rios-Mercado and Bard (1998) note that sequence-dependent setup

times are found in the container manufacturing industry as well as the printed circuit board industry. The

formulations in Rios-Mercado and Bard (1998) indicate the assumption has been made that setup can only

be performed after the machine is no longer processing any job and the job for which setup is being per-
formed is ready. The examples in Rios-Mercado and Bard (1999a,b) discussing the container manufacturing

industry state that the machines must be adjusted whenever the dimensions of the containers are changed,

which presumably cannot be done until the machine is idle. We follow this concept and require the machine

on which setup is to be performed to be idle and the job for which setup is required to be available as well.

This paper continues with a review of related research in Section 2. An integer programming model is

presented and described in Section 3. Lower bounds are developed in Section 4 for use in evaluating

schedules produced with the four heuristics described in Section 5. Using randomly generated test prob-

lems, described in Section 6, the heuristics are compared in Section 7. The quality of the lower bounds is
also discussed. Section 8 concludes the paper.
2. Literature review

This literature review will have one component regarding scheduling and a second regarding the ran-

dom keys genetic algorithm. Scheduling in flexible flow lines and the less general hybrid flow lines can be
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organized by the approaches used to solve them. We will categorize approaches based on the use of branch-
and-bound, extensions of previous flow line techniques, applications of metaheuristics and development of

new techniques.

Salvador (1973) first considered multiple machines at serial stages (hybrid flow line) with no buffers

between stages. Branch-and-bound techniques are applied to determine the optimal permutation schedule

in terms of makespan. Brah and Hunsucker (1991) used branch-and-bound in the hybrid flow shop with an

arbitrary number of stages and intermediate buffers. Moreover, they provide a means by which non-

permutation schedules or schedules with inserted idle time can be created. Rajendran and Chaudhuri (1992)

also utilized branch-and-bound but restricted the resultant schedule to the set of permutation schedules.
Santos et al. (1995) combined permutation schedules with the FIFO queuing discipline at all stages after the

first stage. The jobs enter the line according to one of the n! permutations and then begin processing at

every stage thereafter in the order they completed processing at the previous stage. The best permutation

solution is found by considering every possible permutation of jobs that can enter the line, tempered by the

introduction of a lower bound on the optimal makespan.

Extending heuristics developed for the single line flowshop has been considered by numerous authors.

Sriskandarajah and Sethi (1989) examined worst case performance for various heuristics based on

Johnson�s Rule applied to two stage hybrid flow shops. Lee and Vairaktarakis (1994) developed heuristics
for multistage hybrid flow shops by extending results for a two stage hybrid flow shop and aggregating

machines at each stage. Johnson�s Rule was also applied by Gupta (1997) to the case with one machine in

the first stage and multiple machines in the second stage. Oguz et al. (1997) examined a three stage flexible

flow line with one machine at each stage where the difference in job routings were handled as different job

types (jobs visit either stages 1 and 3 or 2 and 3). Johnson�s Rule was used for each of the types of jobs.

Ding and Kittichatphayak (1994) modeled the hybrid flow line as an extension of a single line flow shop,

adapting Campbell et al.�s (1970) method for flow shops or placing jobs at the end of the current sequence

considering the idle time of the machines. Riane et al. (1998) considered a three stage hybrid flow shop with
two machines at the second stage and one at each of the other stages. They developed a dynamic pro-

gramming-based heuristic based on the Campbell et al. heuristic for single flow lines and a branch-and-

bound heuristic. Santos et al. (1996) also considered the use of heuristics developed for the single flow shop

case as a method to generate an initial permutation schedule that would then be followed by the application

of FIFO. Brah and Loo (1999) evaluated how heuristics developed for the single flow line case would

perform in the hybrid environment.

Nowicki and Smutnicki (1998) built on their prior experience with tabu search in single ma-

chine (Nowicki and Smutnicki, 1994) and flow shop (Nowicki and Smutnicki, 1996) scheduling. Robust
local search improvement techniques for flexible flow line scheduling were considered by Leon and

Ramamoorthy (1997). Rather than considering neighborhoods of the schedules, they considered neigh-

borhoods of the problem data. The perturbed data is then used by a problem specific heuristic to generate a

solution whose quality is assessed using the original problem data. Lee et al. (1997) have applied genetic

algorithms to the joint problem of determining lot sizes and sequence to minimize makespan in flexible flow

lines. Though this research included sequence-dependent setup times, buffers between stages were limited

and jobs must be processed in the same order on the machines. Combining genetic algorithms with sim-

ulated annealing was also considered.
The examination of flexible flow lines as defined in this paper and the development of heuristics spe-

cifically for this problem began with Wittrock (1985, 1988). Kochhar and Morris (1987) model flexible flow

lines in a more complete manner in that they allow for setups between jobs, finite buffers which may cause

blocking, and machine down-time. They extend a Wittrock algorithm and evaluate several policies with a

deterministic simulation. Sawik (1992) has developed numerous results for the flexible flow line scheduling

problem. The basic model includes factors such as transportation time between stages and non-zero release

times. However, sequence-dependent setup times are not included. The Route Idle Time Minimization
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(RITM) heuristic aims to minimize makespan by minimizing the idle time of the machines. In this case,
buffers are limited in size so that blocking can occur. Later, Sawik (1994, 1995) extended the RITM heu-

ristic to the case of no buffers between stages.

While many papers have been written in the area of scheduling hybrid and flexible flow lines, many of

them are restricted to special cases of two stages or specific configurations of machines at stages. There does

not seem to be any published work addressing heuristics for flexible flow lines (multiple serial stages that

need not have the same number of machines per stage and jobs that need not visit all stages) with sequence-

dependent setup times. Rios-Mercado and Bard (1998, 1999a,b) do consider flow shops with sequence-

dependent setup times in several papers, but these papers all require exactly one machine per stage and
permutation schedules (all jobs visit each stage in the same order).

Genetic algorithms were introduced by Holland (1975). He provided the basic framework for genetic

algorithms: chromosomes represent solutions which reproduce based on how well they solve the problem at

hand in a manner analogous to survival of the fittest. A key feature of genetic algorithms is their ran-

domness. Chromosomes are chosen to reproduce randomly and experience changes based on random

chance, as organisms do in the natural environment. Theoretically, the best chromosome will survive to the

final generation of chromosomes. The chromosomal representation of the scheduling information can take

many forms and influence the types of genetic operators. A common problem for combinatorial applica-
tions of genetic algorithms is that some operations may create feasibility problems. Bean (1994) has in-

troduced an alternative method to encode problem solutions using random numbers called a Random Keys

Genetic Algorithm (RKGA), which has been applied to resource allocation problems, quadratic assignment

problems, multiple machine tardiness scheduling problems, jobshop makespan minimization problems and

the generalized traveling salesman problem (Bean, 1994; Norman and Bean, 1999; Snyder and Daskin,

2001). RKGA will be discussed further in a later section.
3. Integer programming model

The problem addressed in this research can be expressed formally as an integer program. Let g be the

number of stages. Let n be the number of jobs to be scheduled and mt be the number of machines at stage t.
We assume that machines are initially setup for a nominal job 0 and must finish setup for a tear down job

nþ 1 at every stage. We have the following definitions.

n number of true jobs to be scheduled
g number of serial stages

gj last stage visited by job j
mt number of machines at stage t
pti processing time for job i at stage t (assumed to be integral)

stij setup time from job i to job j at stage t
Si set of stages visited by job i
St set of jobs that visit stage t ¼ fi : pti > 0g
cti completion time for job i at stage t
xtij 1 if job i is scheduled immediately before job j at stage t and 0 otherwise

The processing times of jobs 0 and nþ 1 are set at 0 and the setup times are times to move from and to

the nominal set point state. We assume that all jobs currently in the system must be completed at each stage

before the jobs requiring scheduling may begin setup. The completion times of job 0 at each machine at

each stage are set to the earliest time setup may begin at that stage. We include the restriction that every

stage must be visited by at least as many jobs as there are machines in that stage. This is expressed by the
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inequality jStjPmt, t ¼ 1; 2; . . . ; g, so nP maxt¼1;2;...;g fmtg. If a stage is visited by fewer jobs than there are
machines, there is not a difficult sequencing decision to be made, because each job could be assigned its own

machine. The formulation also assumes that a job that does not visit a stage has a processing time of 0.

That is, pti ¼ 0 if i 62 St. Additionally, we assume pti P 1 if i 2 St. The formulation becomes
P : min z; ð1Þ

s:t:
Xn

j¼1

xtoj ¼ mt; t ¼ 1; . . . ; g; ð2Þ

X
j2fSt ;nþ1g

xtij ¼ 1; i ¼ 1; . . . ; n; t 2 Si; ð3Þ

X
i2f0;Stg

xtij ¼ 1; j ¼ 1; . . . ; n; t 2 Si; ð4Þ

ctj 
 cti þMtð1 
 xtijÞP stij þ ptj; i ¼ 0; . . . ; n; j ¼ 1; . . . ; n; t 2 Si; ð5Þ
ctj 
 ct
1

j þMt
jð1 
 xtijÞP stij þ ptj; i ¼ 0; . . . ; n; j ¼ 1; . . . ; n; t 2 Si 
 f1g; ð6Þ

xtij 6 ptj;

xtji 6 ptj;

(
i; j 2 f0; 1; . . . ; n; nþ 1g; t ¼ 1; . . . ; g; ð7Þ

c1
j 
 c1

0 PMtp1
j ; j ¼ 1; . . . ; n;

ctj 
 ct
1
j PMtptj; j ¼ 1; . . . ; n; t ¼ 2; . . . ; g

( )
; ð8Þ

ctj P ct0; j ¼ 1; . . . ; n; t ¼ 1; . . . ; g; ð9Þ
zP cgjj ; j ¼ 1; . . . ; n; ð10Þ

xtij 2 f0; 1g; i; j 2 f0; 1; . . . ; n; nþ 1g; t ¼ 1; . . . ; g;

xtij ¼ 0; i ¼ j; t ¼ 1; . . . ; g;
ð11Þ

ctj P 0; j ¼ 0; . . . ; n; t ¼ 1; . . . ; g: ð12Þ
This formulation is based on the TSP. Each stage exists independently except that stage t�s completion

times are stage t þ 1�s ready times. Eq. (1) defines the objective function which is to minimize the makespan

z. We assume setup times satisfy some sufficient condition to ensure that an optimal solution will always

exist that utilizes all mt machines at each stage, as in the single stage case. For instance,
st0j 6 min
i6¼0

ðpti þ stijÞ 8j
and
ptj þ st0j 6

P
i 6¼j ðpti þ mink stkiÞ

mt 
 1
8j
are both sufficient. Constraint set (2) ensures that mt machines are scheduled in each stage. Constraint sets

(3) and (4) ensure that each job is scheduled on one and only one machine in each stage. Constraint set (5)
forces job j to follow job i by at least i�s processing time plus the setup time from i to j if i is immediately

before j. The value Mt is an upper bound on the time stage t completes processing, similar to the upper

bound A in Rios-Mercado and Bard (1998).
M1 ¼
Xn

i¼1

p1
i

�
þ max

j2f0;...;ng
s1
ji

�
and Mt ¼ Mt
1 þ

Xn

i¼1

pti

�
þ max

j2f0;...;ng
stji

�
:
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Constraint set (6) forces job j at stage t to complete after it completes at stage t 
 1, plus its processing time

at stage t, plus the setup time from its predecessor to j. The value Mt
j is set to Mt

j ¼ maxi ðstijÞ þ ptj. Con-

straint sets (5) and (6) together ensure that a job cannot begin setup until it is available (done at the

previous stage) and the previous job at the current stage is complete. Constraint sets (5) and (6) also serve as

sub-tour elimination constraints. Constraint set (7) ensures that jobs that do not visit a stage are not as-

signed to that stage. Constraint sets (8) and (9) ensure that the completion time of a job at stage t, that does

not visit stage t, is set to the job�s completion time at stage t 
 1. The value Mt is an upper bound on the

time stage t completes processing and is the same as that used in constraint set (5). Constraint set (10) links
the decision variables cgj and z. Constraint sets (11) and (12) provide limits on the decision variables.

Due to the fact that each machine at each stage is a TSP once jobs have been assigned to the machine,

this problem is NP-hard. In this research, we need not only sequence jobs on machines, we must consider

which jobs are to be assigned to the machines. Fourteen small problems were considered in order to

evaluate the feasibility of solving this MIP directly. Each problem has integer processing times selected

from a uniform distribution between 50 and 70 and integer setup times selected from a uniform distribution

between 12 and 24. Table 1 contains additional problem characteristics. Problems 1–9 all have 1 machine at

every stage. Problems 10–14 have stages with different numbers of machines at each stage; the number of
machines at each stage is shown in order. Problems 4, 5, 11 and 12 have different sets of jobs visiting each

stage; the number of jobs that visit each stage is shown. In the other problems, all jobs visit all stages. These

problems have been solved in CPLEX 7.5 on a Sun Microsystems Enterprise 6000 with UltraSPARC-II 336

MHz cpus and 4.0 GB of memory. Each problem was allowed a maximum of 7200 seconds of CPU time

(two hours) using the CPLEX setting ‘‘set timelimit 7200’’. Of these, only two were solved to optimality in

the two hour time limit. These problems both had 2 stages, 1 machine per stage and 6 jobs which visited

both stages. They were solved in 810.37 and 695.24 seconds respectively. The other twelve problems were

stopped due to the time limit before finding an optimal integer solution, and in three cases, stopped before
finding an integer feasible answer. Table 1�s final column contains summary information from the at-

tempted solution with CPLEX.

Table 1�s contents indicate that a quite sizable gap still exists for most of these problems after a fairly

lengthy amount of time. The only problems that were solved to optimality are very small. Heuristic ap-

proaches will therefore be used in this research.
Table 1

Problems given to CPLEX

Problem Number of stages Number of machines per

stage

Number of jobs per

stage

CPLEX results

1 2 1 6 Optimal solution found

2 2 1 30 Gap: 97.61%

3 2 1 30 Optimal solution found

4 2 1 29/29 Gap: 98.26%

5 2 1 99/95 Gap: infinite

6 4 1 6 Gap: 65.05%

7 4 1 30 Gap: 98.73%

8 8 1 6 Gap: 88.32%

9 8 1 30 Gap: infinite

10 2 5/10 30 Gap: 86.78%

11 2 7/8 28/30 Gap: 87.47%

12 2 3/7 95/91 Gap: infinite

13 4 1/10/10/7 30 Gap: 95.14%

14 8 10/3/7/9/3/1/9/10 30 Gap: 95.68%
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4. Lower bounds

This section contains a theorem with three lower bounds for the problem P . The notation ‘‘min½k
’’ will be

used to indicate the (k þ 1)st from the lowest value and min½0
 � min. For example, given a list of values {2,

5, 7, 8, 9}, min½1
 ¼ 5.

Theorem. The following are lower bounds on any feasible solution to P :
LBð1Þ ¼ max
i¼1;...;n

X
t2Si

ðpti

(
þ min

j¼0;...;n
stjiÞ

)
; ð13Þ

LBð2Þ ¼ max
t¼1;...;g

min
i2St

Xt
1

s¼1

ðps
i

(
þ min

j¼0;...;n
ssjiÞ þ

P
i2St ðpti þ minj¼0;...;n stjiÞ

mt
þ min

i2St

Xg

s¼tþ1

ðps
i þ min

j¼0;...;n
ssjiÞ

þ 1

mt

Xmt
1

k¼1

min
i2St ½k


Xt
1

s¼1

ðps
i

"
þ min

j¼0;...;n
ssjiÞ 
 min

i2St

Xt
1

s¼1

ðps
i þ min

j¼0;...;n
ssjiÞ

#)
: ð14Þ
Proof

LB(1): This is a job-based bound. Every job i must be processed at each stage and must also be setup, which

requires at least the minimal amount of time required to setup job i. Solutions which are feasible to

constraint sets (5) and (6) satisfy this condition.

LB(2): This is a machine based bound. Every stage t needs time to process job 0 and then the preemptive

processing and minimal setup time for the rest of the jobs. In addition to minimum setup and pro-
cessing at each stage, we can add in the minimum time to get to the stage plus the minimum time to

finish after the stage. Furthermore, we may be able to bound idle time for parallel machines at each

stage waiting for the first available job. This yields the bound LBð3Þ originally proposed in Kurz and

Askin (2001) as an extension to Leon and Ramamoorthy (1997). The first term represents the min-

imum time required for a job to reach stage t. The second term assumes that jobs are processed pre-

emptively at stage t. The third term represents the minimum time for a job to finish processing and

setup on the stages after t. The final term requires the observation that the second machine at stage t
does not begin processing until the second job arrives, and so on for all the machines at stage t. We
find the minimum times for the second, third, etc. jobs to reach stage t and allocate this time to all

the machines at this stage. Solutions which are feasible to constraint sets (5) and (6) satisfy this con-

dition. h
5. Heuristics

The first heuristic is a na€ıve approach that simply assigns jobs to machines in a greedy fashion. The
second expands on a multiple machine insertion heuristic used in previous work done on the single stage

problem, in order to take advantage of the sequence-dependent nature of the setup times. The third is based

on Johnson�s Rule. The fourth is an application of the random keys genetic algorithm. Note that the second

caters to setup aspects of the problem while the third derives from standard flow shops. No restrictions on

the form of the resultant schedules is made.

Let [i] indicate the ith job in an ordered sequence in the following. In many of the following heuristics, a

modified processing time is used. It is denoted by ~pti for job i in stage t and is defined as ~pti ¼ pti þ minj stji.
This time represents the minimum time at a stage t that must elapse before job i could be completed.
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5.1. SPT cyclic

This is a na€ıve greedy heuristic that assign jobs to machines with little or no regard for setup times or the

interactions between stages. Because of its simplistic nature, it provides a basis of comparison for the other

heuristics. In the SPT Cyclic Heuristic (SPTCH), the jobs are ordered at stage 1 in increasing order of the

modified processing times ~p1
i . At subsequent stages, jobs are assigned in earliest ready time order. Jobs are

assigned to the machine in every stage that allows it to complete at the earliest time as measured in a greedy

fashion.

1. Create the modified processing times ~p1
i .

2. Order the jobs in non-decreasing order (SPT) of ~p1
i .

3. At each stage t ¼ 1; . . . ; g, assign job 0 to each machine in that stage.

4. For stage 1:

a. Let bestmc¼ 1.

b. For ½i
 ¼ 1 to n, i 2 S1:

For mc ¼ 1 to m1:
Place job [i] last on machine mc.
Find the completion time of job [i]. If this time is less on mc than on bestmc,

let bestmc ¼ mc.
Assign job [i] to the last position on machine bestmc.

5. For each stage t ¼ 2; . . . ; g:

a. Update the ready times in stage t to be the completion times in stage t 
 1.

b. Arrange jobs in increasing order of ready times.

c. Let bestmc¼ 1.
d. For ½i
 ¼ 1 to n, i 2 St:

For mc ¼ 1 to mt:

Place job [i] last on machine mc.
Find the completion time of job [i]. If this time is less on mc than on bestmc,

let bestmc ¼ mc.
Assign job [i] to the last position on machine bestmc.

5.2. Flowtime Multiple Insertion Heuristic

The Flowtime Multiple Insertion Heuristic (FTMIH) is a multiple insertion heuristic to minimize the

sum of flowtimes (completion-ready times) at each stage. It is a multiple machine, multiple stage adaptation

of the Insertion Heuristic for the TSP. This multiple insertion heuristic with completion time criteria was

found to be effective for the single stage case. Setup times are accounted for by integrating their values into

the processing times using ~pti . The Insertion Heuristic can then be performed using these modified pro-

cessing times at each stage. Once jobs have been assigned to machines, the true processing and setup times

can be used. The FTMIH has the following steps for each stage t:

1. Create the modified processing times ~pti .
2. Order the jobs in non-increasing order (LPT) of ~pti .
3. For ½i
 ¼ 1 to n, i 2 St:

a. Insert job [i] into every position on each machine.

b. Calculate the true sum of flowtimes using the actual setup times.

c. Place job i in the position on the machine with the lowest resultant sum of flowtimes.

4. Update the ready times in stage t þ 1 to be the completion times in stage t.
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5.3. The g=2, g=2 Johnson’s Rule

Johnson�s Rule (1954) finds the optimal makespan solution for F 2kCmax. Variants have been created, for

example by Campbell et al. (1970), for the flow shop with more than two stages. This heuristic is an ex-

tension of Johnson�s Rule to take into account the setup times. The aggregated first half of the stages and

the aggregated last half of the stages are considered to create the order for assignment in stage 1. The value
~p1
i is the sum of modified processing times for stages 1 to bg=2c and ~pgi is the sum over stages bg=2c þ 1 to g.

1. Create the modified processing times ~p1
i and ~pgi .

2. Let U ¼ fjj~p1
j < ~pgj g and V ¼ fjj~p1

j P ~pgj g.

3. Arrange jobs in U in non-decreasing order of ~p1
i and arrange jobs in V in non-increasing order of ~pgi .

Append the ordered list V to the end of U .

4. At each stage t ¼ 1; . . . ; g, assign job 0 to each machine in that stage.

5. For ½i
 ¼ 1 to n, i 2 S1:

a. For mc ¼ 1 to m1:

Place job [i] last on machine mc.
If this placement results in the lowest completion time for job ½i
, let m ¼ mc.

b. Place job [i] last on machine m.

6. For each stage t ¼ 2; . . . ; g:

a. Update the ready times in stage t to be the completion times in stage t 
 1.

b. Arrange jobs in increasing order of ready times.

c. For ½i
 ¼ 1 to n, i 2 St:
(1) For mc ¼ 1 to mt:
Place job [i] last on machine mc.
If this placement results in the lowest completion time for job [i], let m ¼ mc.
(2) Place job [i] last on machine m.
5.4. Random keys genetic algorithm

RKGA differs from traditional genetic algorithms most notably in the solution representation. Random

numbers serve as sort keys in order to decode the solution. The decoded solution is evaluated with a fitness

function that is appropriate for the problem at hand. For example, Norman and Bean (1999) suggest using
the following solution representation for an identical multiple machine problem. Each job is assigned a real

number whose integer part is the machine number to which the job is assigned and whose fractional part is

used to sort the jobs assigned to each machine. Once the job assignments and order on each machine are

found through the decoding, a schedule can be built incorporating additional factors such as non-zero

ready times and sequence-dependent setup times. The desired performance measure can then be found

using the schedule. In this research, this representation is used for the jobs in the first stage. The assignment

of jobs to machines in subsequent stages follows the method used in SPTCH and the Johnson�s Rule Based

Heuristics, where each job is assigned to the machine that allows it to complete at the earliest time as
measured in a greedy fashion.

The genetic operators and related parameters used in this research are based on those in Bean (1994).

Each generation has a population of 100 chromosomes. The initial population is generated randomly. An

elitist strategy is used for reproduction. Each chromosome is decoded and the resulting schedule is eval-

uated for the makespan. Chromosomes with lower makespans are more desirable, so 20% of the chro-

mosomes with the lowest makespan values are automatically copied to the next generation. Parametrized

uniform crossover is used to select 79% of the chromosomes in the next generation. For each chromosome

in the next generation, the following is performed. Two chromosomes in the current generation are selected



Job 1 2 3 4

(a) Parent 1 1.23 2.03 1.45 2.89

Parent 2 2.15 2.45 1.85 1.03

(b) Crossover 0.45 0.23 0.68 0.75

(c) Child 1.23 2.03 1.45 1.03

Fig. 1. Parametrized uniform crossover example.
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at random. For each job, a random number is generated. If the value is less than 0.7 (following Bean, 1994),

the value from the ‘‘first’’ chromosome is copied to the new chromosome, otherwise the value from the
‘‘second’’ chromosome is selected. The remaining 1% of the next generation is filled through ‘‘immi-

gration’’, in which new chromosomes are randomly generated. The above procedures are repeated until we

are fairly sure that the population has settled into a good location in the search space. In this research, we

continue until 100 generations have been examined without finding an improved schedule. This value was

selected empirically.

A small example of the parametrized uniform crossover technique is provided in Fig. 1 to illustrate the

structure of the chromosome as well as the parametrized uniform crossover technique itself. Consider a 4

job, single stage, 2 machine problem. Two parent chromosomes have been selected in Fig. 1(a). The first
chromosome tells us that there is a schedule where machine 1 has jobs 1 and 3, in that order and machine 2

has jobs 2 and 4, in that order. The second parent chromosome tells us that there is a schedule where

machine 1 has jobs 4 and 3, in that order and machine 2 has jobs 1 and 2, in that order. This information,

when combined with the other problem data such as processing time, ready times, etc, is used to determine

when each job completes processing on the machines for each schedule. The parametrized uniform

crossover technique requires four random numbers to be generated, as shown in Fig. 1(b). The first three

random numbers tell us to copy the genes from Parent 1 to the resulting child and the last random number

tells us to copy the genes from Parent 2 to the resulting child. The resulting child is shown in Fig. 1(c). The
child chromosome is decoded to tell us that there is a schedule where machine 1 has jobs 4, 1 and 3, in that

order and machine 2 has job 2 only.
6. Generation of test data

An experiment was conducted to test the performance of the heuristics. Integer data was generated. Data

required for a problem consist of the number of jobs, range of processing times, number of stages and

whether all stages have the same number of machines or not. Each stage requires data defining how many

machines exist at that stage, the sequence dependent setup times, the processing times and the ready times.

The ready times for stage 1 are set to 0 for all jobs. The ready times at stage t þ 1 are the completion times

at stage t, so this data need not be generated. Processing times are distributed uniformly over two ranges
with a mean of 60:[50–70] and [20–100]. Flexible flow lines are considered by allowing some jobs to skip

some stages. Following Leon and Ramamoorthy (1997), the probability of skipping a stage is set at 0, 0.05,

or 0.40. The setup times are uniformly distributed from 12 to 24 which is 20% to 40% of the mean of the

processing time. The setup time matrices are asymmetric and satisfy the triangle inequality. The setup time

characteristics follow Rios-Mercado and Bard (1998).

The problem data can be characterized by six factors: the probability that a job skips a stage, range of

processing times, number of stages, whether the number of machines per stage is constant or variable, range



Table 2

Factor levels

Factor Levels

Skipping probability 0.00

0.05

0.40

Processing times Unif (50–70)

Unif (20–100)

Number of stages 2

4

8

Machine distribution Constant

Variable

Depends on machine distribution

Constant Variable

Number of machines 1 Unif(1,4)

2 Unif(1,10)

10

Number of jobs 6

30

100
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in number of machines per stage and number of jobs. Each of these factors can have at least two levels.

These levels are shown in Table 2.

In general, all combinations of these levels will be tested. However, some further restrictions are in-

troduced. The variable machine distribution factor requires that at least one stage have a different number

of machines than the others. Also, the largest number of machines in a stage must be less than the number
of jobs. Thus, the combination with 10 machines at each stage and 6 jobs will be skipped and the com-

bination of 1–10 machines per stage with 6 jobs will be changed to 1–6 machines per stage with 6 jobs.

There are 252 test scenarios and ten data sets are generated for each one.
7. Experimental results

This section discusses the effectiveness of the proposed lower bounds and the proposed construction
heuristics. The heuristics were implemented in C, compiled with Microsoft Visual C++ and run on a PC

with a Pentium III 800 MHz processor with 512 MB of RAM. ‘‘Loss’’ is the (makespan) lower bound)/

lower bound. The best lower bound was used for each problem. The running times were found using the

clock() function.

7.1. Comparing heuristics

Every heuristic considered here was run on the same 2520 data sets. RKGA was run 16 times and the
minimum and average loss over the 16 runs were found for each of the 2520 data sets. Summary statistics

over all the data sets are presented in Table 3. RKGA achieves the lowest values for the loss statistics and

finds the minimum loss schedules many more times than the other heuristics. The variation seen within the

16 RKGA runs will be discussed later. A single factor ANOVA for the algorithm (ALGO$) was performed,



Table 3

Loss statistics for heuristics

Heuristic Loss Number of times

Average Standard deviation Maximum Minimuma

SPTCH 0.25 0.16 0.98 64

FTMIH 0.24 0.15 0.94 180

g=2, g=2 Johnson�s 0.21 0.13 0.79 123

RKGA 0.16 0.11 0.60 2386

a Using the best of the 16 RKGA runs.

Table 4

ANOVA results

Source Sum of squares df Mean square F -ratio P

ALGO 13.682 3 4.561 228.033 0.000

Error 201.497 10076 0.020
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and the results are shown in Table 4. These results indicate that there is at least one heuristic that is different
in mean response. This motivated the use of Fisher�s least significant difference method (Montogomery and

Runger, 2003), with the results summarized in Table 5. These values indicate that RKGA is preferred with

99% confidence.

SPTCH and the g=2, g=2 Johnson�s Based Rule never required more than 0.01 seconds of CPU time in

these experiments. FTMIH required up to 25 seconds and RKGA required more time before stopping for

every single one of the 2520 problem instances, up to 380 seconds for some larger problems. The results of

the Fisher�s least significant difference method indicates that RKGA is better than the g=2, g=2 Johnson�s
Based Rule in general, but the larger running time of RKGA induces the question of when RKGA should
not be used, and instead perhaps the g=2, g=2 Johnson�s Based Rule should be used. The low running time

of the heuristics other than RKGA certainly indicate that perhaps they could be run in the initialization

step of RKGA to provide three potentially good solutions to the first generation.

RKGA generally dominates the g=2, g=2 Johnson�s Based Rule in loss performance, with the g=2, g=2

Johnson�s Based Rule only outperforming the best of 16 runs of RKGA 15 of the 2520 problem instances.

These fifteen instances represent six different configurations, as shown in Table 6. Every one of these fifteen

instances involved problems with exactly 10 machines per stage, eleven involved problems with two stages

and twelve involved problems with the smaller range of processing times. This is reasonable because this
kind of problem somewhat matches the scenario for which Johnson�s Rule was designed. In this case, we

have a two stage flow line and each job must visit each stage. However, instead of only one machine for

each stage, we have ten. This means that a tie in Johnson�s order does not force a job that should be first on
Table 5

Fisher�s least significant difference method

Heuristics Difference of means Significant difference at 99% level? (Yes if difference > 0.01)

SPTCH vs RKGA 0.09 Yes

SPTCH vs g=2, g=2 0.04 Yes

SPTCH vs FTMIH 0.01 No

FTMIH vs RKGA 0.08 Yes

FTMIH vs g=2, g=2 0.03 Yes

g=2, g=2 vs RKGA 0.05 Yes



Table 6

Problems where g=2, g=2 Johnson�s based rule outperforms RKGA

Skipping

probability

Processing time

range

Number of stages Number of ma-

chines per stage

Number of jobs Number of files

0.00 50–70 2 10 30 1

0.00 50–70 2 10 100 5

0.00 20–100 2 10 30 2

0.00 20–100 2 10 100 1

0.05 50–70 2 10 100 2

0.05 50–70 4 10 100 4

78 M.E. Kurz, R.G. Askin / European Journal of Operational Research 159 (2004) 66–82
a machine to be second; the job can be first on another machine at that stage. In this way, we allow several
jobs that are early in the Johnson�s order to move towards the beginning of the schedule on the first stage.

In the second stage, by considering jobs in ready time order and allowing jobs to be placed on the machine

on which it ends soonest, we continue with the Johnson�s paradigm. We allow jobs that arrive to the second

stage and will move through it quickly (before later jobs from stage 1) to be scheduled earlier. These jobs

should not impact the overall makespan much because the later jobs in stage 1 will not arrive in stage 2 very

soon regardless. The low range of processing times and the fact that all jobs visit both stages indicates that

the stages are fairly balanced in terms of workload.

7.2. Discussion of RKGA runs

It has been noted before that 16 RKGA runs were made of the 2520 problem instances, with an average

loss (that is, relative deviation from the lower bound) of 0.16. Since RKGA is a stochastic method, meaning

that each run may not provide the same answer, this section intends to discuss the variation seen in the 16

RKGA runs. The average loss of 16 runs varies from 0, meaning all 16 runs attained the lower bound, to

0.5962, meaning the average deviation from the lower bound for that problem instance was 59.62%. The

values of the best RKGA run in the set of 16 varies from 0 to 0.5759. The standard deviation of the 16
RKGA runs has been calculated for each problem instance as well and varies from 0 to 0.0792. The width

of a 99% confidence interval on the mean loss, with the variance unknown, has been calculated for each

problem instance as well, and varies from 0 to 0.1119. Fig. 2 plots the loss values of the best vs worst

RKGA runs. The points plotted exactly on the x ¼ y line correspond to the runs with 0 variance. The graph
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Fig. 2. Best vs worst RKGA performance over 16 runs.
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illustrates that the RKGA is settling into a fairly consistent solution value, though that value sometimes
appears to be far from the lower bound.

7.3. Quality of the lower bounds

Two lower bounds were presented in a previous section. Recall that LBð1Þ is the job based bound, giving

the maximum time over all jobs to process and minimally setup each job in all stages. LBð2Þ is the machine

based bound, giving the maximum time over all stages to preemptively process and minimally setup all jobs

in that stage, plus the time to reach each stage. While LBð2Þ is the larger 2250 out of 2520 times, LBð1Þ is
larger 270 times. Since LBð1Þ is easy to compute, it should be included even though it is not as good a lower

bound in general as LBð2Þ.

It is noted that RKGA occasionally found solutions very close to the lower bound LBð2Þ. Of the 2520 test

files, the best RKGA solution (of the 16 runs) was equivalent to the lower bound 3 times and within 1% of

the lower bound 29 additional times. Of the 40320 individual RKGA runs, the lower bound was hit 44

times and RKGA was within 1% of the lower bound 344 additional times.

A comparison between the lower bound and optimal solution of each of these problems could be made,

if these problems were easily solved to proven optimality. However, we have discussed this difficulty earlier.
We compare the value of LBð2Þ for the 14 specific problems discussed earlier to the best value found by our

heuristics (always by RKGA in these cases) and to the values returned by CPLEX, when CPLEX was given

a two hour CPU time limit. These comparisons are summarized in Table 7.

Recall that problems 1 and 3 were solved to optimality within this time limit and no integer feasible

solutions to problems 5, 9 and 12 were found within this time limit. Because the RKGA runs and the

CPLEX runs were performed on different machine types, it seems difficult to compare the running times.

However, we note that the longest running time of any of the RKGA runs (not just the 14 discussed here)

on a 800 MHz was about 380 seconds. Whenever CPLEX was unable to solve the problem to optimality, it
provided a current MIP best bound, which was always much lower than the value of LBð2Þ. In the two cases

where CPLEX did solve the problem to optimality, the current MIP best bound was higher than LBð2Þ, but

not much higher. Of course, having LBð2Þ be the same as the optimal solution is ideal, but not always

attainable. This as well as the discussion above regarding the performance of RKGA lead us to conclude

that LBð2Þ is an effective lower bound.
Table 7

Effectiveness of LBð2Þ

Problem LBð2Þ Best heuristic solution

value

Current MIP best

bound

Best integer feasible solu-

tion

1 515 522 521.95 522

2 2222 2272 89.00 3721

3 533 543 542.95 543

4 1935 2191 604.93 3485

5 6874 7236 499.39 None

6 669 708 363.51 1040

7 2384 2489 1082.78 8508

8 980 1040 293.00 2509

9 2689 2876 192.16 None

10 519 544 113.00 855

11 384 407 109.00 870

12 2056 2407 60.99 None

13 2355 2384 149.00 3065

14 2640 2715 247.01 5720

Note: Problems (1) and (3) were solved to optimality.
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8. Conclusions and future work

This paper has examined four heuristics to find schedules minimizing makespan in flexible flow lines with

sequence-dependent setups. These methods included a simplistic greedy method, approaches based on the

TSP nature of the problem and the flow line nature of the problem and an application of the Random Keys

Genetic Algorithm approaches. Lower bounds have been used in the evaluation of these heuristics. The

lower bounds were investigated for performance and found to be efficient. The data characteristics in-

vestigated were designed to reflect characteristics used by other researchers, resulting in 252 types of data
files, with 10 of each type generated. The heuristics were compared on 2520 data files. Through examination

of the experimental results, it was determined that RKGA performed best on the problems examined here.

However, in the specific situation of two stages, jobs that visit each stage and 10 machines per stage, the

g=2, g=2 Johnson�s Based Heuristic was found to be effective as well. Intuition has been provided to explain

this result.

There are potentially unlimited opportunities for research in scheduling to minimize makespan in flexible

flow lines with sequence-dependent setup times. In this paper, we have addressed only a few areas. The

research in this paper has lead to many more questions regarding flexible flow lines with sequence-
dependent setup times. For example, we wonder whether there a definition of a permutation schedule that is

general enough to handle multiple machines in serial stages where not all jobs visit each stage and sequence-

dependent setup times exist? Potential definitions may include a condition that cannot be violated, but does

not tell explicitly what all the permutations may look like. For example, a permutation schedule may be one

in which the relative ordering of start of setup times at each stage does not change from stage to stage. This

definition in no way tells us what jobs should be assigned to what machine in stages with multiple machines

and in fact allows for several alternative assignments at each stage. However, this definition also includes

the traditional definition of a permutation schedule in a flow line. By creating a general permutation
schedule definition, we may be able to find a class of schedules that contains the optimal makespan schedule

for some special case, such as two stages with one machine at the first stage and two machines at the second,

with sequence-dependent setup times at both.

We note that the integer programming formulation for the flexible flow line with sequence-dependent

setup times has not been thoroughly investigated. It has been solved for some specific cases, but its per-

formance on much larger problems is unknown. Work applying branch-and-bound, Lagrangean relaxation

and alternative formulations of this problem are on-going.

The performance of the g=2, g=2 Johnson�s Based Rule, coupled with the performance of a variant in
Kurz and Askin (2003), indicates that perhaps this could be a basis for the heuristic space based search

neighborhoods discussed in Storer et al. (1992). By considering several partitioning schemes on the g stages

to create the two processing times, along the lines of Campbell et al. (1970), a space of the heuristics can be

defined. (We thank an anonymous referee for this insight.)
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