
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tppc20

Production Planning & Control
The Management of Operations

ISSN: 0953-7287 (Print) 1366-5871 (Online) Journal homepage: https://www.tandfonline.com/loi/tppc20

A branch and bound algorithm to minimise total
weighted tardiness on a single batch processing
machine with ready times and incompatible job
families

S. K. Tangudu & M. E. Kurz

To cite this article: S. K. Tangudu & M. E. Kurz (2006) A branch and bound algorithm to minimise
total weighted tardiness on a single batch processing machine with ready times and incompatible
job families, Production Planning & Control, 17:7, 728-741, DOI: 10.1080/09537280600901467

To link to this article: https://doi.org/10.1080/09537280600901467

Published online: 21 Feb 2007.

Submit your article to this journal

Article views: 146

View related articles

Citing articles: 15 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tppc20
https://www.tandfonline.com/loi/tppc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09537280600901467
https://doi.org/10.1080/09537280600901467
https://www.tandfonline.com/action/authorSubmission?journalCode=tppc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tppc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09537280600901467
https://www.tandfonline.com/doi/mlt/10.1080/09537280600901467
https://www.tandfonline.com/doi/citedby/10.1080/09537280600901467#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/09537280600901467#tabModule

Production Planning & Control,
Vol. 17, No. 7, October 2006, 728–741

A branch and bound algorithm to minimise

total weighted tardiness on a single batch

processing machine with ready times and

incompatible job families

S. K. TANGUDU and M. E. KURZ*

Department of Industrial Engineering, Clemson University, Clemson, SC 29634-0920

This research deals with developing a branch and bound algorithm for minimising total
weighted tardiness on a single batch processing machine with characteristics similar to those
seen in the diffusion operation in semiconductor manufacturing. Dominance properties are
utilised in order to increase the efficiency of the algorithm. The developed algorithm is
implemented in Cþþ and tested on different cases. We find the algorithm is capable of solving
problems with up to 32 jobs. Computational results are presented along with a discussion of
the effectiveness of the proposed algorithm and the effects of various parameters on the
efficiency of the algorithm. The branch and bound algorithm can be used to solve relatively
small problems as well as provide a means by which researchers can evaluate the effectiveness
of their heuristics.

Keywords: Wafer production; Batch processing; Scheduling; Branch and bound

1. Introduction

Batch processing is defined as the processing of a

number of jobs simultaneously. A few advantages of

batch processing are that the jobs in the batch get the

same treatment environment, resulting in identical

characteristics for that stage of processing, as well as

higher utilisation of resources. Wafer fabrication uses

batch processing and is one of the most complex

production processes in industry. Complex manufac-

tured products, such as wafer fabrication in the

semiconductor industry, require many steps, several of

which may utilise batch processing. Individual batch

processing operations in wafer fabrication can have

processing times of the order of 10 hours, and dyeing

and printing operations in the textile industry can have

processing times of the order of 6 to 12 hours. Such large

processing times can have profound effects on the

overall production rate. The complexity of the processes

makes it a challenging task to fulfil orders on time.

In real world scenarios, manufacturers face the situation

of frequently not being able to fulfil orders on time and

jobs which may arrive for processing at different times.

Careful batch formation and batch sequencing becomes
important in batch processing to minimise total

weighted tardiness; as Azizoglu and Webster (2000)

point out in the context of the burn-in operation in the

semi-conductor industry, there is a conflict between

utilising the most space in a batch and ensuring that

more valued jobs are processed earlier.
We examine the problem of scheduling a set of n jobs

to minimise total weighted tardiness (TWT) on a single
batch processing machine which can process up to B

jobs simultaneously. B is defined as the maximum batch

size. Each job has a known non-zero ready time rj, so the

problem is considered dynamic (as opposed to static,*Corresponding author. Email: mkurz@clemson.edu

Production Planning and Control
ISSN 0953–7287 print/ISSN 1366–5871 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/09537280600901467

where all jobs are ready at time zero). Each job j also has
a due date di and a weight wj, which reflects the
importance of the job. It also reflects a linear penalty
assessed for each time unit that the job is completed
after its due date. Jobs belong to one of f families.
Processing times of jobs in the same family are equal
and jobs from different families may not be processed in
the same batch; jobs with this condition are often said to
belong to incompatible families. The machine is avail-
able for continuous processing. Once processing of a
batch is initiated, it cannot be interrupted. The ready
time of a batch is given by the longest ready time of all
jobs in the batch. Scheduling a single batch processing
machine consists of forming batches and sequencing
these batches. The sequencing of batches is independent
(i.e. set-up times are not sequence dependent). These
characteristics echo those seen in the diffusion operation
in the semi-conductor industry. This problem is
NP-hard based on reductions to one of two known
NP-hard problems which include characteristics of other
known NP-hard problems: the single machine total
tardiness problem with ready times (Du and Leung
1990) and the single batch processing machine total
weighted tardiness problem with incompatible jobs
(Perez et al. 2005).

2. Literature review

Batch processing machines differ from (regular) unit
processing machines in that more than one job can be
processed simultaneously on the machine at the same
time. This relaxes one of the most important assump-
tions in most scheduling literature (Rinnooy Kan 1976).
A subset of jobs is processed simultaneously in a batch;
the maximum number of jobs that can be in a batch is
called the ‘maximum batch’ size (B) and the actual
number of jobs assigned to a batch is simply called the
‘batch’ size. In order to better describe the types of batch
processing that are addressed in literature, we will use
‘p-batch’when the processing time of the batch depends
only on the type of jobs that are in the batch, not the
number of jobs that are in the batch (Brucker and Knust
2006). One example of general p-batch processing comes
from curing ovens at factories that make electronic
control units for anti-lock brakes—all parts are cured
simultaneously. We are interested in assigning jobs to
batches and sequencing batches on machines, including
determining the completion time of each batch on each
machine. We refer to this process as ‘scheduling‘.

We use a modified version of the notation introduced
by Graham et al. (1979) and extended by many
researchers including Brucker and Knust (2003).
In this paper, we use the following additional

components: p-batch, indicating p-batch processing as
described above; incompat, indicating incompatible
families; and aj when each job j takes up an amount of
space aj in the batch processing machine. We denote the
problem of interest as

1 p� batch, rj, incompat
�� ��XwjTj:

The literature review summarises recent papers
dealing with scheduling on a single p-batch processing
machine as well as papers dealing with the TWT
objective for parallel machines. The single p-batch
processing machine papers are generally motivated by
the burn-in operation in semiconductor manufacturing.
In the burn-in operation, different wafers may have
different processing times but may be placed in the same
batch; the batch processing time is the maximum of the
individual wafer processing times (Uzsoy 1994). Because
jobs with different processing times can be in the same
batch (compatible families) in the burn-in operation,
we will consider this to be the default configuration for
families and will only indicate when this does not hold.
Webster and Baker (1995) include several results for
dynamic p-batch scheduling, focusing on the objective
functions of makespan, total flowtime and maximum
lateness. Uzsoy (1995) succinctly reviews most of the
related literature up to 1994. Due to space constraints,
we refer the interested reader to these papers and focus
this review on literature appearing after 1994 and one
specific reference appearing in 1993. We organise this
brief literature review by the objective function
considered.
The makespan objective function has been recently

considered by numerous researchers. Sung and Choung
(2000) provide an integer programming (IP) formula-
tion. Optimal algorithms are given for the static case
while several solution methods, including branch and
bound (B&B), dynamic programming (DP) and heur-
istics based on the optimal methods for the static case,
are given for the dynamic case. Sung et al. (2002)
consider the dynamic case where jobs belong to one of a
fixed number of compatible families with a DP
algorithm. Dupont and Dhaenens-Flipo (2002) develop
a B&B algorithm for 1jp� batch, ajjC max, solving some
problems with up to 100 jobs. Cheraghi et al. (2003)
consider jobs that all have the same processing time,
which is overly restrictive for research, motivated by the
burn-in operation, and must complete no later than
their due dates, developing a non-linear mixed integer
programming (MIP) formulation and implementing a
genetic algorithm.
Minimising maximum tardiness and the number of

tardy jobs in dynamic batch scheduling, motivated by the
burn-in operation, is considered by Li and Lee (1997).

A branch and bound algorithm to minimise total weighted tardiness 729

They prove that even when ready times and due dates are
agreeable ðri < rj) di � djÞ, the problem of finding the
optimal solution for either objective is NP-hard in the
strong sense. They provide DP algorithms for both
objective functions when ready times, due dates and
processing times are all agreeable.Without the restriction
of agreeable problem data, Wang and Uzsoy (2002)
consider minimising maximum lateness in presence of
ready times, which is also strongly NP-hard, with
solution methods based on DP, heuristics and an
adaptation of the random keys genetic algorithm.

1jp� batchj
P

Cj has been considered by Dupont and
Ghazvini (1997), who used a B&B algorithm, and
Hochbaum and Landy (1997), who developed an
optimal polynomial time heuristic for this problem.
Dupont and Ghazvini (1997) are able to solve problems
with up to 100 jobs. Hochbaum and Landy (1997)
compare their results to the B&B algorithm developed
by Chandru et al. (1993). Implementing Chandru et al.’s
B&B algorithm for the same problem, Hochbaum and
Landy are not able to solve problems with 100 jobs,
while their polynomial time algorithm is able to solve
problems of up to 10 000 jobs. Hochbaum and Landy
(1997) also provide a heuristic solution for the problem
with identical parallel batch processing machines.

Minimising total earliness and tardiness, which is not
a regular performance measure, is considered by Qi and
Tu (1999). In their research, all jobs have the same
processing time, as in Cheraghi et al. (2003). They
consider several variants of the problem, including
weighted earliness and tardiness, agreeable ready times
and due dates, and due date windows.

Uzsoy and Yang (1997) compared a B&B algorithm
with several heuristics for 1jp� batchj

P
wjCj, solving

problems of up to 20 jobs with the B&B algorithm and
solving problems of up to 100 jobs with the heuristics.
Azizoglu and Webster (2000) considered the same
problem generalised to 1jp� batch, ajj

P
wjCj, developing

another B&B algorithm which solves some problems of
up to 25 jobs. Azizolgu and Webster (2001) also
considered 1jp� batch, aj, incompatj�wjCj, a problem
more like the one of interest in this research, developing
a B&B algorithm that solves some problems with up to
25 jobs.

The authors are aware of only a few papers focusing
on the total tardiness or TWT objectives for a single
p-batch machine. Mehta and Uzsoy (1998) show that
1jp� batch, incompatj�Tj is strongly NP-hard. A DP
solves problems with up to 360 jobs and several
heuristics are developed, which solve the problems,
though not necessarily to optimality, much more
quickly. Perez et al. (2005) address 1jp� batch,
incompatj�wjTj through the use dispatching rules.
Kurz and Mason (2005) develop a batch improvement

algorithm which is applied to 1jrj, p� batch,
incompatj�wjTj, solving problems with up to 360 jobs.
This is the only known paper that primarily considers
the exact problem of interest in this paper (Perez et al.
2005 do not include ready times). Closely related but
focused on parallel p-batch processing machines are
Kurz (2003), Balasubramanian et al. (2004) and
Mönch et al. (2005). Kurz (2003) provides some results
on the structure of an optimal schedule for
Pjp� batch, rjj�wjTj with a single family.
Balasubramanian et al. (2004) consider Pjp� batch,
incompatj�wjTj, developing several heuristics and
genetic algorithms. Mönch et al. (2005) consider
Pmjrj, p� batch, incompatj�wjTj and address
1jrj, p� batch, incompatiblej�wjTj as a sub-problem in
which the single machine schedule is created using a
constructive algorithm. All of these papers, except Kurz
(2003), consider an environment in which the jobs in a
batch must belong to the same family, such as in the
diffusion operation in the semi-conductor industry.
Potts and Kovalyov (2000) consider both serial batch
(in the sense of lot-sizing) and p-batch scheduling in an
extensive literature review, though no papers in that
review include the characteristic of incompatible job
families. The only paper considering the TWT objective
listed in Potts and Kovalyov (2000) is by Brucker et al.
(1998) in which neither ready times nor incompatible
families are considered. Mathirajan and Sivakumar
(2003) provide a focused review of batch processing
scheduling in the semiconductor manufacturing indus-
try, providing insight into the recent historical interest in
the topic. The authors are unaware of any papers in the
open literature reporting optimal solution methods for
1jp� batch, rj, incompatiblej�wjTj, which we desire in
order to facilitate the evaluation of heuristic and
meta-heuristic solution methods in future research.

3. Proposed branch and bound algorithm

In this section a branch and bound (B&B) algorithm is
proposed. We begin with the overall algorithm struc-
ture, which is somewhat similar to that used in Chandru
et al. (1993). The proposed B&B algorithm utilises an
upper bound (UB) and a lower bound (LB) at every
node; this will be discussed below. The fathoming and
branching decisions are also discussed. We finish the
section with an example.

3.1 Overall algorithm structure

Initially, an overall upper bound (UB) on the TWT for a
problem instance must be identified. The initial value of
UB can be the TWT of any feasible solution to the

730 S. K. Tangudu and M. E. Kurz

problem, or it may be set to be large enough that any
feasible solution will have a lower TWT. Once the UB’s
value has been determined, we begin branching from the
current node. In the initial stage of the algorithm, all
jobs are sorted in increasing order of ready time. In the
proposed algorithm, we will implement a depth-first
strategy, based on our desire to more quickly find
a complete feasible schedule Furthermore, we
anticipate experimentation with a truncated version of
the proposed B&B algorithm for 1jp� batch, rj,
incompatj�wjTj as a sub-procedure in a heuristic
solution method for Pjp� batch, rj, incompatj�wjTj.

Each node is defined by a partial sequence � of jobs
partitioned into batches which are scheduled consecu-
tively from the beginning of the schedule. For each
active node, child nodes are created by appending
batches to the end of the current partial sequence. The
batches to be appended are created by forming all
possible batches of unscheduled jobs with size ranging
from 1 to the smaller of B and the number of remaining
unscheduled jobs, ensuring that only jobs of the same
family are placed into the same batch. Without loss of
generality, consider the case of family f which has nf�B
unscheduled jobs. We have

Xf

j¼1

nf

f

� �

possible child nodes for family f. Clearly, as nf increases
and the number of families increase, the total number of
child nodes increases greatly as well; it will be desirable
to fathom nodes as early as possible in order to prune
the search tree quickly. This paper includes a dominance
property which will allow us to greatly reduce the
number of possible child nodes at each level.

After a child node is formed we compute a lower
bound (LB), which is described in a later section. If the
child node does not represent a complete solution, we
compare LB to UB and fathom the node if LB>UB.
If the child node represents a complete solution, we
compute the TWT. If the resulting value is lower than
UB, we replace UB by the resulting value and the
current node becomes the incumbent solution.

When all nodes have been either fathomed or
identified as having the same TWT as the incumbent
solution, we have completed the application of the B&B
algorithm and have found an optimal solution to the
problem.

3.2 Upper bound calculation

We may use a sufficiently large number or the TWT of a
feasible solution as the initial upper bound at the root
node. In general, the lower the active upper bound,

the faster a B&B algorithm can determine the optimal
solution to the problem at hand. Therefore, in the
experimental study to be discussed in a later section, we
have utilised the batch improvement algorithm (BIA) by
Kurz and Mason (2005) to form an initial feasible
solution. For completeness, we summarise this method
here in Appendix A while noting that it is not in itself
part of this research.
BIA considers a current solution and iterates from

the last to the first batch. BIA tries smartly to move
jobs from later batches to the current batch without
increasing the starting time of the current batch.
Initially, batches are formed greedily by considering
the jobs sorted in non-decreasing order of ready times,
with ties being broken by non-decreasing order of
weighted due date. This initial job sequencing is made
without regard to job family designations. Batches of
jobs in the same family are then formed by adding jobs
one at a time according to the sorted list until either
(1) the current batch is full (i.e. B same-family jobs have
been grouped together) or (2) a different job family is
encountered, thereby forcing the formation of a new
batch, given our incompatible job families assumption.
In step 1, we determine whether the current batch

needs any jobs added to it. Step 2 begins the search for
jobs to add to the current batch by first determining to
which family the additional jobs should belong. Once we
complete step 2, we have a batch that has space for at
least one job and we know the family to which the
additional jobs should belong.
In step 3, we determine which jobs can be added to the

current batch. In step 4, we add jobs to the current batch
as long as the current batch has room and there are
eligible jobs. Each batch which has jobs removed from it
must also have BIA performed upon it. Once step 4 is
complete, we consider the next earlier batch and begin
BIA on that batch.

3.3 Lower bound computations

For the purposes of this section, we assume that a
partial solution � is given. LB(�) has two components –
one for the scheduled jobs and one for the unscheduled
jobs – which will be discussed below. Let S(U) be the set
of (un)scheduled jobs and LB(�) be the corresponding
lower bound at the current node. We have
LB(�)¼LB(S)þLB(U).
At each node, the current partial solution will be

expanded by appending one or more jobs in a batch.
With this child creation methodology, we will never
change the existing batches. Therefore, LB(S) is the true
value of the TWT for the scheduled jobs at the current
node. We compute the TWT for the scheduled jobs as
follows. Let J[k](�) be the set of jobs in batch k from a

A branch and bound algorithm to minimise total weighted tardiness 731

partial schedule �. All jobs in the same family require
the same processing time P[k](�) and only jobs in the
same family can be assigned to the same batch. Let
R[k](�) be the ready time of batch k in �, which is the
maximum of the ready times for all jobs in the batch;
R½k�ð�Þ ¼ maxi2J½k�ð�Þfrig. Let C[k](�) be the completion
time of batch k. All jobs in a batch have the same
completion time which is the sum of the batch start time
and the batch processing time; the batch start time is the
larger of its ready time and the completion time of the
previous batch: C k½ �ð�Þ ¼ maxfC k�1½ �ð�Þ,R k½ �ð�Þgþ P k½ �ð�Þ
and C½k�

i ðPÞ ¼ C½k�ðPÞ, 8i 2 J k½ �ðPÞ. We then compute the
TWT of the scheduled jobs by summing the individual
weighted tardiness of the scheduled jobs, resulting in
LB(S)¼

P
i2S wi maxð0,Cið�Þ � diÞ.

When computing LB(U), we use modified ready times
for each unscheduled job. Job j’s modified ready time is
the larger of its ready time and the completion time of
the last batch of �; this can be expressed as the
maximum of the job’s ready time and the completion
time of all jobs in S so rj

0 ¼ maxðrj, maxj2SfCjð�ÞgÞ.
We utilise a simple lower bound which essentially
assumes that all jobs can be processed in parallel:
LBðUÞ ¼

P
j2U wj maxð0, rj

0 þ pj � djÞ:

3.4 Dominance properties

For completeness, we repeat three results: Proposition 2
from Mehta and Uzsoy (1998) (called MU
Proposition 2) concerning the form of an optimal
schedule for 1jp� batch, incompatj�, where � is a
regular measure of performance (which TWT is); and
Proposition 2 and Lemma 3 from Uzsoy (1995) (called
U Proposition 2 and U Lemma 3) concerning the form
of an optimal schedule for 1jp� batch, incompatj�wjCj.

MU Proposition 2: In a static [emphasis added] batch
processing machine scheduling problem with incompatible
job families and a regular measure of performance, there
exists an optimal schedule which contains no partially full
batches except possibly the last batch of each family to be
processed in the schedule.

[Note: MU Proposition 2 assumes that jobs in the same
family are indexed in non-decreasing order of due dates.]

U Proposition 2: Consider the static [emphasis added]
batch processing machine scheduling problem with incom-
patible job families where the performance measure to be
minimised is total weighted completion time. Let us index
the jobs in each family in decreasing order of their weight.
Then there exists an optimal schedule where all batches of
the same family contain consecutively indexed jobs.

U Lemma 3: Consider the problem of minimising total
weighted completion time on a single or parallel identical

batch processing machines with incompatible families.
There exists an optimal schedule where all batches
processed on the same machine are sequenced in increas-
ing order of pk/Wk, where p

k is the processing time of the
family to which the jobs belong and Wk is the sum of the
job weights of the jobs in the batch.

While these were developed for static problems, we
can utilise them in some parts of our solution procedure
for dynamic problems, based on our Proposition 1. In
Proposition 1, we see that, after a partial sequence � has
been created and certain conditions are met, the
scheduling of the remaining jobs may be done optimally.
We use the decreasing order of Wk/p

k to emphasise a
relationship with the WSPT (weighted shortest proces-
sing time) rule.

Proposition 1: Consider 1jp� batch, rj, incompatj
P

wjTj

with a partial sequence � of jobs partitioned into batches,
which are scheduled consecutively from the beginning
of the schedule. If rj � maxi2SfCið�Þg and dj �
maxi2SfCið�Þg, 8j 2 U, then there exists an optimal
completion of the partial sequence with the following
characteristics:

(i) The optimal completion contains no partially full
batches except possibly the last batch of each
family to be processed in the schedule.

(ii) The batches are formed, after indexing the jobs in
each family in decreasing order of their weight, by
considering consecutively indexed jobs.

(iii) The batches are sequenced in decreasing order of
Wk/p

k.

Proof: Once the jobs in U have ready times no later
than maxi2SfCið�Þg, the problem reduces to 1jp� batch,
incompatj�wjTj for the jobs in U, and so MU
Proposition 2 applies. When the jobs in U also have
due dates earlier than maxi2SfCið�Þg the problem reduces
to 1jp� batch, incompactj�wjCj and U Proposition 2
and U Lemma 3 hold.

Proposition 1 can be used to create Dominance
Property 1.

Dominance Property 1: Consider a node representing a

partial sequence �. If the last scheduled batch completes
at time maxi2SfCið�Þg and rj � maxi2SfCið�Þg and
dj � maxi2SfCið�Þg, 8j 2 U, then an optimal completion
can be found by applying the following algorithm:

1. Sort the jobs in each family in decreasing order of
their weights.

2. For each family, form batches by grouping B jobs
at a time taken consecutively from the sorted list
created in step 1, where the last batch of each
family may possibly have less than B jobs.

732 S. K. Tangudu and M. E. Kurz

3. Sort the batches in decreasing order of Wk/p
kand

schedule the batches in that order on the single
machine.

Theorem 1 of Kurz (2003) (called K Theorem 1) is
restated here. K Theorem 1 was written to address
Pjp� batch, rjj

P
wjTj. It basically says that if a job is

ready before the batch before the one it is in, and that
batch has room, the TWT will not be increased by
moving the job into the earlier partially full batch. In
our Proposition 2, we simply indicate that K Theorem 1
can be applied individually to the batches of jobs from
the same family on a single machine. We utilise the
notation introduced in section 3.3.

K Theorem 1: Number the b batches in a partial
schedule � from 1 to b such that, C[k](�)�C[k�1](�),
k2 {1, 2, . . . , b� 1}. If j2 j [k](�), rj�R[k�1](�) and
jJ[k�1](�)j5B, then TWT will not be increased by
moving job j to batch k� 1 from batch k.

Proposition 2: Consider two batches Ba and Bb of the
same family such that Ba and Bb are scheduled with no
other batches from the same family between them, Ba is
scheduled before Bb, Ba has fewer than B jobs, and the
ready time of Ba is greater than or equal to the ready time
of job j in Bb. TWT will never increase as a result of
moving job j to Ba from Bb.

Proof: This is a straight-forward application of K
Theorem 1 where the batches of the different families
are considered separately.

The following example will highlight how
Proposition 2 can be used to reduce the number of
possible child nodes to consider. Consider 2 jobs in
the same family with a processing time of 8. Job 1 is
in batch A and is ready at time 6. Job 2 is in batch B
and is ready at time 2. The maximum batch size is 2.
If batch A is scheduled before batch B, then the
conditions of Proposition 2 hold. Before Proposition 2
is applied, job 1 completes at time 14 and job 2

completes at time 22, as shown in figure 1a. After

Proposition 2 is applied, job 1 still completes at time

14 and now, so does job 2, as shown in figure 1b. In

this situation, if U¼ {1, 2}, the child node of 1 and 2

batched together dominates the child node of job 1

placed in a batch by itself.
Proposition 2 is used to create Dominance Property 2.

We present Dominance Property 2 for a single family

with n unscheduled jobs, noting that it is extended to

multiple incompatible families by applying it separately

for each family. In the first step, we create all the nodes

with the first available job and from 0 to B� 1

additional members. In the second step, we create

nodes with B total members, selected from the jobs not

including the first available job. The key to reducing the

number of nodes created is that we only create nodes

that have less than B elements if they contain the earliest

available job.

Dominance Property 2: Consider a node representing a

partial sequence �, let U be the set of jobs not in � where

jUj ¼ n and all jobs are from the same family. Sort the

jobs in U in increasing order of ready times. Let [j] be the

jth job in the sorted list. We only need to consider child

nodes created by the following algorithm:

1. For k¼ 0 to max(B� 1, n� 1)
Create ð n�1

k
Þ nodes with job [1] and k� 1 of the

remaining n� 1 nodes.
2. For k¼ 2 to n�Bþ 1
Create ð n�k

B�1
Þ nodes with job [k] and B� 1 of the last

n� k nodes in the sorted list.

To better understand the given algorithm, consider

that the first step completely replicates the method to

create the child nodes when Dominance Property 2 is

not applied. Step 2 results when dominated nodes are

not generated; for example, if any node is generated

whose constituent jobs are a subset of the jobs in an

existing node but do not contain the first job (which is

ready earliest), application of Proposition 2 tells us that

0 2 4 6 8 10 12 14 16 18 20 22 24

Batch A: Job 1, ready at 6(a)

(b)

Batch B: Job 2, ready at 2

0 2 4 6 8 10 12 14 16 18 20 22 24

Batch A': Job 1, ready at 6
Job 2, ready at 2

Figure 1. (a) Two batches before Proposition 2 applied. (b) One batch after Proposition 2 applied.

A branch and bound algorithm to minimise total weighted tardiness 733

it is dominated by the existing node. The result is that
only full batches will be generated in Step 2. If we have
n�B unscheduled jobs in the same family, we now have

XB�1

k¼0

n� 1
k

� �
þ

Xn�Bþ1

k¼2

n� k
B� 1

� �

possible child nodes. Before applying Dominance
Property 2, when n�B, we had

PB
l¼1 ð

n
l Þ possible child

nodes. If B¼ 4 and n¼ 6, this reduces the number of
child nodes from 56 to 31.

It would be convenient if a simple optimal ordering
existed for the TWT static batch processing machine
scheduling problem with incompatible job families.
Using the weighted earliest due date ordering appears
attractive, based on MU Proposition 3 (Proposition 3
in Mehta and Uzsoy (1998) shown below) and
U Proposition 2, described earlier. MU Proposition 3
applies to 1jp� batch, incompatj�Ti and assumes that
jobs in the same family are indexed in non-decreasing
order of due dates.

MU Proposition 3: There exists an optimal schedule [for
1jp� batch, incompatj�Tj where jobs in the same family
are indexed in non-decreasing order of due dates] where all
batches of the same family contain consecutively indexed
jobs. Furthermore, for all batches of the same family j, the
latest due date in one batch is no larger than the earliest
due date of the next batch.

The following counter-example shows that this is not
the case: the weighted earliest due date order may not lead
to an optimal schedule for 1jp� batchj�wjTj.

Counter-example: Consider four jobs in the same
family with a maximum batch size of two and other
relevant data as shown in table 1. The weighted
earliest due date orderings (using increasing order of
dj/wj) are 2–1–3–4 or 2–1–4–3. The schedule (2, 1), (3, 4)
yields a TWT of 97 while the schedule (2, 3), (1, 4) yields
a TWT of 60.

3.5 Branching decisions

When determining which child node to consider next, we
consider the most recently created node. This is due,
in part, to our desire to utilise a stack data structure,

in which the most recently created node is first accessed
(LIFO). Other rules to determine which node should be
evaluated first, such as ‘highest LB first’or ‘first come
first served’have not been evaluated.

3.6 Example problem

Table 2 shows eight jobs belonging to two families, with
weights, ready times, due dates and processing times as
given. Jobs 1–4 belong to family 1 and jobs 5–8 belong
to family 2. The data has already been sorted by non-
decreasing ready times. The maximum batch size is
B¼ 2. For this problem data, UB from BIA (Kurz and
Mason 2005) is 99, which is shown in figure 2 as the root
node of the tree. Figure 2 illustrates the nodes described
in the following, with each node containing the jobs in
the most recently added batch as well as the lower
bound computed for that node and an indication of
whether that node is fathomed. In the execution of the
example, note that we do not expand nodes in the same
order as is implemented.
In the initial stage, U¼ {1, 2, 3, 4, 5, 6, 7, 8}. The

possible child nodes for the root node, after applying
Dominance Property 2, are (4), (4, 3), (4, 1), (4, 2), (3, 1),
(3, 2), (1, 2), (7), (7, 8), (7, 6), (7, 5), (8, 6), (8, 5), (6, 5).
We shall refer to these child nodes as Level 1 nodes, as
indicated in figure 2.
Consider job 4 by itself in a node at Level 1. Job 4

starts at 0 and completes at 4; CT, the completion time
of the last batch on the machine, is 4 as well. Since job 4
is not due until 15, it will never be tardy no matter how
the following batches are constructed and LB(S)¼ 0.
In order to calculate LB(U) for this partial schedule, we
replace the ready times of the unscheduled jobs by the
modified ready times. The computation for this node’s
LB(U) is shown in table 3. LB is calculated by
aggregating LB(S) and LB(U), so LB¼ 0. Table 4
shows LBs for all Level 1 nodes as well as whether each
is fathomed or not, based on the relation between each
level 1 node’s LB and UB. This information is also
shown in figure 2. All Level 1 nodes except (7, 5) have

Table 1. Counter-example problem data.

Job j wj dj pj dj/wj

1 1 5 20 5
2 40 20 20 0.5
3 3 21 20 7
4 5 35 20 7

Table 2. Example problem data.

Job j wj rj dj pj Family

4 8 0 15 4 1
7 4 1 18 10 2
8 2 3 22 10 2
3 9 4 18 4 1
6 3 6 24 10 2
1 8 7 16 4 1
2 5 9 19 4 1
5 2 10 25 10 2

734 S. K. Tangudu and M. E. Kurz

LB(S) values of zero. The non-zero LB(S) value for (7,
5) is found as follows. The batch (7, 5) can start at time
10, since that is the later of the ready times of the two
jobs. It completes at time 20, as family 2’s processing
time is 10. Job 5 is not tardy, but job 7 is tardy by 2 time
units. Since the weight on job 7 is 4, the resulting TWT
of the partial schedule represented by node (7, 5) is 8.

Assume that the node selected to expand is node 4.
The possible Level 2 child nodes are (7), (7, 8), (7, 6),

(7, 5), (8, 6), (8, 5), (6, 5), (3), (3, 1), (3, 2), (1, 2), after
applying Dominance Property 2. The lower bounds and
results of the fathoming decisions are shown in Level 2
of figure 2. Level 3 of figure 2 is found if jobs (7, 8) are
selected as the second batch after job 4. The second

4

— UB = 99

6, 52

26, 5

4, 1
12

4, 2
30 0

3, 2
46

1, 2
38

7
0

7, 8
24

3
81

3, 1
49

3, 2
66

1, 2

70

TWT=69* TWT=99

4, 3
0

8, 5
281

8, 6
129

7, 5
249

7, 6
105

4, 3
0

6, 5
279

3, 1 3, 23 1, 2 7 7, 6 8, 6
12 30 0 22 20 16 65 89

8,5 6,5
209 207 185

7, 5

6

249

7, 8

6, 5

231

7,5

LB

Node legend

Indicates node
is fathomed

Jobs in batch
added last

Level 1

Level 2

Level 3

Level 4

Level 5

6

69 99 109

Figure 2. Nodes for the example problem.

Table 3. First node’s LB(U) calculation.

Job j wj rj
0 dj pj

Best
completion

time
Best

tardiness

Best
weighted
tardiness

7 4 4 18 10 14 0 0
8 2 4 22 10 14 0 0
3 9 4 18 4 8 0 0
6 3 6 24 10 16 0 0
1 8 7 16 4 11 0 0
2 5 9 19 4 13 0 0
5 2 10 25 10 20 0 0

LB(U)¼ 0

Table 4. Lower bounds for level 1 nodes.

S LB(S) LB(U) LB
Fathomed

because LB>Current UB?

4 0 0 0 N
(4, 1) 0 12 12 N
(4, 2) 0 30 30 N
(4, 3) 0 0 0 N
(3, 1) 0 12 12 N
(3, 2) 0 46 46 N
(1, 2) 0 38 38 N

(7) 0 0 0 N
(7, 8) 0 24 24 N
(7, 6) 0 105 105 Y
(7, 5) 8 249 257 Y
(8, 6) 0 129 129 Y
(8, 5) 0 281 281 Y
(6, 5) 0 279 279 Y

A branch and bound algorithm to minimise total weighted tardiness 735

batch completes at time 14. If jobs (3, 1) are selected as
the third batch, we have S¼ {4, 7, 8, 1, 3} and the third
batch ends at 18. The possible Level 4 child nodes of
node (3, 1) after application of Dominance Property 2
are (2), (6) and (6, 5).

The only remaining batches to consider are (2) and
(6, 5); the schedules are completely determined by
selecting either batch first, as the other batch will form
the only child node of the selected batch. Therefore, the
LB in Level 4 of figure 2 contains the actual TWT for
each unfathomed option. We see that the batches (4), (7,
8), (3, 1), (2), (6, 5) result in a TWT of 69, lower than the
current upper bound. Therefore, UB¼ 69 and (4), (7, 8),
(3, 1), (2), (6, 5) is the new incumbent solution, marked
with an asterisk. The schedule is shown in table 5.

An optimal schedule can be obtained by following the
same steps as described above until there is no node for
expansion. Table 6 gives an optimal schedule for this
problem with a TWT of 58.

4. Experimental investigation

We pattern our experimental design after the one
presented by Mehta and Uzsoy (1998) to test the
proposed B&B algorithm. We considered three classes
of problems characterised by six factors: the number of

jobs per family, the number of families, the job
processing times, the maximum batch size, the range
of job ready times and the range of job due dates. All
jobs have integer weights drawn uniformly from 1 to 10.
The value of each family’s processing time in each class
of problem was drawn from the same discrete uniform
distribution shown in table 7. Moreover, the levels for
the range of jobs ready times and the range of job due
dates were identical for all problem classes and are
shown in table 7 as well. The ready time factor has two
levels corresponding to the value of �. When � is low,
the ready times are closer to zero and therefore have a
smaller range. When � is high, the ready times may be
further from zero and therefore have a larger range. The
due date factor has two values which are based on the
values of two parameters, R and T. T is the expected
percentage of tardy jobs and R is a range parameter.
When both take on their low values, due dates are closer
together. When both take on their high values, due dates
have a larger range. In both cases, due dates are centred
on a function of the estimated makespan. The levels of
the factors that depend on problem class are shown in
table 7 as well.
In total, each of the three classes contains

1� 2� 2� 1� 2� 2¼ 16 design points. Class I repre-
sents very small problems with 8 to 12 total jobs, Class
II represents small problems with 15 to 20 total jobs and
Class III represents medium problems with 24 to 32
total jobs. The characteristics of Class II and Class III
differ only in the number of jobs per family. As 10
replicates are generated for each design point, a total of
480 problem instances are generated and examined.
For each instance, the resulting schedule’s TWT,
computation time and the number of explored nodes
are recorded.

5. Results and discussion

The developed algorithm is implemented in Cþþ and
tested on a SunFire v480 with 2 900MHz CPUs and 8
GB RAM. All test problems are allowed to run up to
3600 CPU seconds and all problems in Classes I and II
were solved in this time limit. However, due to memory
limitations, several problems failed to run longer than
2700 CPU seconds in Class III. The distribution of
unsolved problems is shown in table 8. All 30 unsolved
problems have 32 jobs.
Each line in tables 9 and 10 represents 40 test

problems. The complete proposed B&B algorithm,
with both dominance properties applied and BIA as
the upper bound at the root node, was run on each
problem instance, and table 9 summarises the overall
results by problem size, as well as by level of the ready

Table 5. Complete schedule for new incumbent.

Batch no. Job j wj rj dj pj Family Cj TWT

1 4 8 0 15 4 1 4 0
2 7 4 1 18 10 2 14 0

8 2 3 22 0
3 3 9 4 18 4 1 18 0

1 8 7 16 16
4 2 5 9 19 4 1 22 15
5 6 3 6 24 10 2 32 24

5 2 10 25 14

69

Table 6. Complete schedule for optimal schedule.

Batch no. Job j wj rj dj pj Family Cj TWT

1 4 8 0 15 4 1 8 0
3 9 4 18 0

2 1 8 7 16 4 1 13 0
2 5 9 19 0

3 7 4 1 18 10 2 23 20
6 3 6 24 0

4 8 2 3 22 10 2 33 22
5 2 10 25 16

58

736 S. K. Tangudu and M. E. Kurz

T
a
b
le

7
.
P
ro
b
le
m

ch
a
ra
ct
er
is
ti
cs

co
m
m
o
n
to

a
ll
p
ro
b
le
m

cl
a
ss
es
.

P
ro
b
le
m

fa
ct
o
r

V
a
lu
es

u
se
d

T
o
ta
l
v
a
lu
es

p
er

cl
a
ss

Jo
b
s
p
er

fa
m
il
y
n
j

C
la
ss

I
4

1
C
la
ss

II
5

C
la
ss

II
I

8

N
u
m
b
er

o
f
fa
m
il
ie
s
f

C
la
ss

I
2
,
3

2
C
la
ss

II
3
,
4

C
la
ss

II
I

3
,
4

M
a
x
im

u
m

b
a
tc
h
si
ze

B
C
la
ss

I
2
,
3

2
C
la
ss

II
4
,
8

C
la
ss

II
I

4
,
8

F
a
m
il
y
p
ro
ce
ss
in
g
ti
m
e
p
f

P
(p

f
¼
2
)
¼
P
(p

f
¼
4
)
¼
P
(p

f
¼
1
6
)
¼
0
.2

1
P
(p

f
¼
1
0
)
¼
0
.3

P
(p

f
¼
2
0
)
¼
0
.1

Jo
b
re
a
d
y
ti
m
e
r j

�
2
{0
.5
,
1
.5
}

2
r j
2
[0
,�

�
C

m
a
x
],
w
h
er
e

C
m
a
x
¼

n
j
�
f
�
E

p
f��

B

Jo
b
d
u
e
d
a
te

d
j

R
¼
0
.5

a
n
d
T
¼
0
.3

O
r
R
¼
2
.5

a
n
d
T
¼
0
.6

2

r j
2

�
�
�
R 2

�
� ,�

þ
�
R 2

�
	 ,

w
h
er
e

�
¼

C
m
a
x
ð1

�
T
Þ

A branch and bound algorithm to minimise total weighted tardiness 737

time and the due dates. The average computation times

of various instances in CPU seconds and the average

number of explored nodes are shown in table 9.

5.1 Impact of total number of jobs

From table 9, it is evident that as the total number of

jobs increases, the average computation time as well as

the number of explored nodes increases. This is

consistent with most B&B results. The computation

time and number of explored nodes are fairly small for

15 or fewer total jobs. The computation time increases

by two orders of magnitude when moving from 15 to 20

jobs, and by one to two orders of magnitude when

moving from 20 to 24 jobs. The number of explored

nodes generally increases by one order of magnitude

with the same increases in total number of jobs. When

the total number of jobs increases to 32 from 24, we see

the limits of the proposed B&B algorithm are reached.

Not only do nearly half of these problems fail to solve in

the time allowed, but the number of nodes explored for

the solved problems are again higher by an order of

magnitude. When the total number of jobs increases to

32 from 24, the computation time on average does not

increase when ready times and due dates are drawn from

a smaller range. Dominance Property 2 reduces the

number of child nodes created in these cases and

Dominance Property 1 allows us to find optimal

schedule completions more often in these cases.

5.2 Impact of ready times

As the range of ready times increases, computation time

and number of nodes decrease as per our expectations.

When the range of ready times is high, a relatively larger

number of dominant nodes are fathomed in the initial

stages of the algorithm as compared to the smaller range

of ready times, due to the application of Dominance

Property 2. This property reduces the possible number

of explored nodes, hence less computation time.

5.3 Impact of due dates

In most cases, computation time is less when due dates
are centred at an earlier date. One of the possible
explanations is the impact of Dominance Property 1.
When due dates are centred at an earlier date, after a
certain stage all jobs are due. In some cases, after a
certain point, all jobs are ready as well. At this point,
we can apply Dominance Property 1 and it is easy to
find an optimal schedule of the remaining jobs. This
property reduces the possible number of explored nodes,
hence less computation time.

5.4 Impact of maximum batch size

Table 10 contains the average CPU time in seconds and
average number of nodes explored, aggregated by the
number of families and the maximum batch size. It is
interesting to note that as the maximum batch size
increases, computation time as well as the number of
explored nodes decrease when other parameters are held
constant. This is directly attributable to the impact of
Dominance Property 2.

6. Conclusions and extensions

This research deals with the problem of minimising
TWT on a single batch processing machine with job
ready times. A dominance property has been developed
and used in calculating the lower bound of nodes in the
B&B tree. A different dominance property has been
used to fathom nodes quickly based on the ready times
of the jobs in the batch. Using these results we
constructed a branch-and bound algorithm to solve
problems involving up to 32 jobs.
Results show that as the batch size increases the

number of explored nodes decrease and also as the ready
time range increases the computation time decreases.
Also, increasing the problem size increases computation
time and this is more significant as the number of jobs
exceeds 20.

Table 8. Distribution of unsolved problems.

Ready time variability Due date tightness Maximum batch size
(*, *, *, *,�, *) (*, *, *, *, *,RT) (*, *,B, *, *, *)

Problem R¼ 0.5 R¼ 2.5
Class (nj, f, *, *, *, *) 0.5 1.5 T¼ 0.6 T¼ 0.6 4 8

III (8, 4, *, *, *, *) 20 10 18 12 28 2

Note: There are 40 problem instances in each design point.

738 S. K. Tangudu and M. E. Kurz

T
a
b
le

9
.
A
v
er
a
g
e
ch
a
ra
ct
er
is
ti
cs

o
f
so
lv
ed

p
ro
b
le
m
s.

R
ea
d
y
ti
m
e
v
a
ri
a
b
il
it
y
(*
,*
,*
,*
,�
,*
)

D
u
e
d
a
te

ti
g
h
tn
es
s
(*
,*
,*
,*
,*
,R

T
)

0
.5

1
.5

R
¼
0
.5

T
¼
0
.3

R
¼
2
.5

T
¼
0
.6

O
v
er
a
ll
a
v
er
a
g
e

P
ro
b
le
m

cl
a
ss

(n
j,
f,
*
,*
,*
,*
)

C
P
U

ti
m
e
(s
)

N
u
m
b
er

n
o
d
es

ex
p
lo
re
d

C
P
U

ti
m
e
(s
)

N
u
m
b
er

n
o
d
es

ex
p
lo
re
d

C
P
U

ti
m
e
(s
)

N
u
m
b
er

n
o
d
es

ex
p
lo
re
d

C
P
U

ti
m
e
(s
)

N
u
m
b
er

n
o
d
es

ex
p
lo
re
d

C
P
U

ti
m
e
(s
)

N
u
m
b
er

n
o
d
es

ex
p
lo
re
d

I
(4
,
2
,*
,*
,*
,*
)

5
0
.0
1

5
0

5
0
.0
1

2
7

5
0
.0
1

3
7

5
0
.0
1

4
0

5
0
.0
1

3
9

(4
,
3
,*
,*
,*
,*
)

0
.0
9

3
0
9

0
.0
2

6
3

0
.0
7

2
2
7

0
.0
4

1
4
4

0
.0
5

1
8
6

II
(5
,
3
,*
,*
,*
,*
)

0
.0
8

3
3
1

0
.1
1

2
7
4

0
.1
0

3
0
0

0
.0
9

3
0
5

0
.1
0

3
0
3

(5
,4
,*
,*
,*
,*
)

3
.1
4

7
0
5
2

3
.0
2

5
3
4
4

2
.8
6
7

5
4
7
8

3
.2
9

6
9
1
8

3
.0
8

6
1
9
8

II
I

(8
,
3
,*
,*
,*
,*
)

1
7
7
.2
2

7
2
5
5
6

2
3
.9
0

8
9
6
3

2
6
8
.2
7

6
0
4
9
3

6
6
.9
9

2
1
0
2
9

1
0
0
.5
7

4
0
7
6
0

(8
,
4
,*
,*
,*
,*
)

1
4
1
.8
8

2
8
5
5
1
4

4
5
7
.6
2

4
0
2
8
5
6

2
6
1
.5
2

3
8
9
0
8
4

4
9
1
.4
9

3
2
7
0
2
7

3
3
1
.3
3

3
2
8
6
0
5

N
o
te
:
C
la
ss

II
I
p
ro
b
le
m
s
w
it
h
4
fa
m
il
ie
s
o
n
ly

in
cl
u
d
e
v
a
lu
es

fo
r
so
lv
ed

p
ro
b
le
m
s.

T
h
e
*
in
d
ic
a
te
s
a
g
g
re
g
a
ti
o
n
a
cr
o
ss

a
ll
le
v
el
s
o
f
th
e
fa
ct
o
r.

A branch and bound algorithm to minimise total weighted tardiness 739

In order to improve the algorithm for larger size
problems, we would need to develop additional dom-
inance properties. However, we feel a more fruitful use
of this work is as an improvement method in a parallel
machine version of the problem, where we can use the
B&B in a truncated form for each machine separately.
Some other potential extensions of this work involve
sequence dependent set up times and compatible job
families. Clearly, a B&B algorithm such as this one can
be used by researchers developing heuristic and meta-

heuristic solution methods for 1jp� batch, rj,
incompatj�wjTj to evaluate the effectiveness of their
algorithms on small problems.

References

Azizoglu, M. and Webster, S., Scheduling a batch processing
machine with non-identical job sises. Int. J. Prod. Res., 2000,
38, 2173–2184.

Azizoglu, M. and Webster, S., Scheduling a batch processing
machine with incompatible job families. Comp. Indust. Eng.,
2001, 39, 325–335.

Balasubramanian, H., Monch, L., Fowler, J. and Pfund, M.,
Genetic algorithm based scheduling of parallel batch
machines with incompatible job families to minimise total
weighted tardiness. Int. J. Prod. Res., 2004, 42, 1621–1638.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y.,
Potts, C.N., Tautenhahn, T. and van de Velde, S.L.,
Scheduling a batching machine. J. Sched., 1998, 1, 31–54.

Brucker, P. and Knust, K., 2006, Complexity results for
scheduling problems. Available online at: http://
www.mathematik.uni-osnabrueck.de/research/OR/class/
(accessed 20 February 2006).

Chandru, V., Lee, C.Y. and Uzsoy, R., Minimising total
completion time on batch processing machine. Int. J. Prod.
Res., 1993, 31, 2097–2121.

Cheraghi, S.H., Vishwaram, V. and Krishnan, K.K.,
Scheduling a single batch-processing machine with disagree-
able ready times and due dates. Int. J. Indust. Eng., 2003, 10,
175–187.

Du, J. and Leung, J.Y.-T., Minimising total tardiness on
one processor is NP-hard. Math. Oper. Res., 1990, 3,
483–495.

Dupont, L. and Dhaenens-Flipo, C., Minimising the make-
span on a batch machine with non-identical job sizes: an
exact procedure. Comp. Oper. Res., 2002, 29, 807–819.

Dupont, L. and Ghazvini, F.J., A branch and bound
algorithm for minimising mean flow time on a single
batch processing machine. Int. J. Indust. Eng., 1997, 4,
197–203.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy
Kan, A.H.G., Optimisation and approximation in determi-
nistic sequencing and scheduling theory: a survey. Ann. Disc.
Math., 1979, 5, 287–326.

Hochbaum, D.S. and Landy, D., Scheduling semiconductor
burn-in operations to minimise total flowtime. Oper. Res.,
1997, 45, 874–885.

Kurz, M.E. and Mason, S. J., Minimising total weighted
tardiness on a batch-processing machine with incompatible
job families and job ready times. Int. J. Prod. Res., 2005,
in press (submitted in July 2005).

Kurz, M.E., On the structure of optimal schedules for
minimising total weighted tardiness on parallel, batch-
processing machines, in Proceedings of the Industrial
Engineering Research Conference, Portland, OR
(CD-ROM), 2003.

Li, C.-L. and Lee, C.-Y., Scheduling with agreeable release
times and due dates on a batch processing machine. Euro. J.
Op. Res., 1997, 96, 564–569.

Mathirajan, M. and Sivakumar, A.I., Scheduling of batch
processors in semiconductor manufacturing. A review, in
Proceedings of the Singapore MIT Alliance, 2003. Available
online at: https://dspace.mit.edu/retrieve/3521/IMST021
(accessed 20 February 2006).

Mehta, S.V. and Uzsoy, R., Minimising total tardiness on a
batch-processing machine with incompatible job families.
IIE Trans., 1998, 30, 165–178.

Table 10. Impact of batch size on computations in class I problems.

Maximum batch size (*, *, *, *,B)

Low level High level
2 for class I 3 for class I

4 for class II and III 8 for class II and III

Problem class (nj, f, *, *, *, *)
Average

CPU time (s)
Average nodes

explored
Average

CPU time (s)
Average nodes

explored

I (4, 2, *, *, *, *) 50.01 52 50.010 25
(4, 3, *, *, *, *) 0.08 259 0.029 112

II (5, 3, *, *, *, *) 0.13 389 0.060 216
(5, 4, *, *, *, *) 4.64 8074 1.520 4321

III (8, 3, *, *, *, *) 182.24 77540 18.880 3979
(8, 4, *, *, *, *) 569.46 63 1299 304.100 22 8478

Note: Class III problems with 4 families only include values for solved problems.

The * indicates aggregation across all levels of the factor.

740 S. K. Tangudu and M. E. Kurz

Monch, L., Balasubramanian, H., Fowler, J.W. and
Pfund, M.E., Heuristic scheduling of jobs on parallel
batch machines with incompatible job families and unequal
ready times. Comp. Oper. Res., 2005, 32, 2731–2750.

Perez, I., Fowler, J.W. and Carlyle, W.M., Minimising total
weighted tardiness on a single batch processing machine
with incompatible job families. Comp. Oper. Res., 2005, 32,
327–341.

Potts, C.N. and Kovalyov, M.Y., Scheduling with batching: a
review. Euro. J. Op. Res., 2000, 120, 228–249.

Qi, X. and Tu, F., Earliness and tardiness scheduling
problems on a batch processor. Disc. Appl. Math., 1999,
98, 131–145.

Rinnooy Kan, A.H.G., Machine Scheduling Problems, 1976
(Martinus Nijhoff: The Hague, The Netherlands).

Sung, C.S. and Choung, Y.I., Minimising makespan on a
single burn-in oven in semiconductor manufacturing. Euro.
J. Oper. Res., 2000, 120, 550–574.

Sung, C.S., Choung, Y.I., Hong, J.M. and Kim, Y.H.,
Minimising makespan on a single burn-in oven with job
families and dynamic job arrivals. Comp. Oper. Res., 2002,
29, 995–1007.

Uzsoy, R. and Yang, Y., Minimising total weighted comple-
tion time on a single batch processing machine. Prod. Op.
Manage., 1997, 6, 57–73.

Uzsoy, R., Scheduling a single batch processing machines with
non identical job sizes. Int. J. Prod. Res., 1994, 32,
1615–1635.

Uzsoy, R., Scheduling batch processing machines with
incompatible job families. Int. J. Prod. Res., 1995, 33,
2685–2708.

Wang, C.S. and Uzsoy, R., A genetic algorithm to minimise
maximum lateness on a batch processing machine. Comp.
Oper. Res., 2002, 29, 1621–1640.

Webster, S. and Baker, K.R., Scheduling groups of jobs on a
single machine. Oper. Res., 1995, 43, 692–703.

Dr. Mary E. Kurz is Assistant Professor of Industrial Engineering at Clemson University. She earned
her MS in Systems Engineering and PhD in Systems and Industrial Engineering from the University
of Arizona. Her research interests include scheduling and genetic algorithms, for both single and
multiple objective problems.

Sarath Tangudu holds a MS degree in Industrial Engineering from the Clemson University. His
research interests include developing algorithms and heuristics for production scheduling problems
in semi conductor industry. He has worked as an Operations Research Analyst at Southern
Company, Birmingham for the past 2 years. He has been involved with simulation and optimisation
in resource planning and supply chain.

A branch and bound algorithm to minimise total weighted tardiness 741

