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Abstract

Many scheduling problems encountered in practice are must address requirements that are not found in the literature

like maximizing the number of jobs that have a particular color. These nontraditional requirements are sometimes an

objective as when the desirability of a schedule increases with the number of jobs of the same color that are scheduled

consecutively. Other times, the requirements take the form of constraints as in cases where it is forbidden to have more

than two consecutive jobs with a particular color. To complicate the situation, most real scheduling problems are

multiobjective. This research centers on bicriteria scheduling with nontraditional requirements using an experimental

approach and a Random Keys Genetic Algorithm to find Pareto optimal solutions. We address both traditional and

nontraditional requirements in a single machine job shop with 20–50 jobs.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Scheduling is truly unique topic because it is both
a task performed in virtually every industry multiple
times each day and the basis for academic research
covering more than half a century. This research
focuses on using an evolutionary algorithm to find
good schedules for a single machine job shop
with more than one objective and also considering
nontraditional requirements, that is, objectives
and constraints that are found in practice but not
in the literature. These requirements can involve
continuous variables as with time-based measures;
e front matter r 2006 Elsevier B.V. All rights reserved
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however, our focus will be on nontraditional
requirements involving attributes like color and a
product feature.

To illustrate the type of problem upon which the
research if focused, consider the common situation
in which the master production schedule is sent to
the shop floor for implementation. In practice, this
schedule is almost always modified, sometimes
dramatically, to accommodate a number of practical
issues that are not considered by the central planning
system. For example, assembling an automobile for
the international market requires building cars with
both right and left hand drive. A very important
feature of a good schedule is to cluster as many of
each drive side together as possible so parts are
staged from one side for as long as possible. This is
one example of a nontraditional requirement that is
.
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an objective. On the other hand, a nontraditional
constraint in this example might be that efficient
product demands that at least n orders for cars with
drive on the same side must be scheduled consecu-
tively or the schedule is infeasible.

Our experience as well as the literature (e.g.,
Kondakci and Bekiroglu, 1997; Sarin and Harihar-
an, 2000) suggests that schedulers in industry must
consider more than one objective; hence, this
research will include multiple objectives. This
research, then, explores a single machine job shop
in which the schedule may include traditional and
nontraditional requirements. As in the traditional
single machine job shop problem structure, it is
assumed that n jobs are to be scheduled and their
properties are known with certainty before the
schedule is created. As is common in this type of
research, an experimental approach is used that
creates approximate solutions using an algorithm or
heuristic. Genetic algorithms (GA) are frequently
employed and their performance can be made
greatly enhanced by carefully tuning the parameters
as illustrated by Pongcharoena et al. (2002).
Another approach is to marry an evolutionary
algorithm with another search procedure with one
example found in Dagli and Sittisathanchai (1995).
Here, a Random Keys Genetic Algorithm (RKGA)
is utilized to generate approximate Pareto optimal
solutions for a series of scenario-based problems.
The methodology utilizes the weighting method to
create a single fitness function and includes the
nontraditional requirements via a technique in-
spired by penalty functions.

2. Overview of the literature

2.1. Multiobjective optimization

Consider a program with k (kX2) conflicting
objective functions ðf i : <

n ! <Þ that are to be
minimized simultaneously. That is, we wish to find a
solution, x, from the set of feasible solutions, X, that
solves the problem Minx2X f ðxÞ ¼ ff 1ðxÞ; f 2ðxÞ; . . . ;
f kðxÞg. Since it is assumed that the objectives
conflict, there is no single value of x that minimizes
all objectives simultaneously in the single objective
sense, so ‘‘optimal’’ must be defined differently.

While optimal has been defined in a number of
ways over the years for this problem, in this research
we use the following well-known ideas. A decision
vector x� 2 X is efficient or Pareto optimal if there
does not exist an x 2 X ; xax� such that
f iðxÞpf iðx
�Þ for i ¼ 1; . . . ; k with strict inequality

holding for at least one index i. The objective
function value corresponding to this point, f ðx�Þ, is
referred to as nondominated. Further, a decision
vector x� 2 X is weakly efficient or weakly Pareto
optimal if there does not exist a x 2 X ; xax� such
that f iðxÞof iðx

�Þ for i ¼ 1; . . . ; k and the corre-
sponding objective function value is called weakly
nondominated. Since problems typically have a
number of solutions that satisfy these properties, the
collection is called the Pareto frontier.

Using these definitions, a number of approaches
have been developed to resolve multiobjective
problems that are chronicled in many excellent
references such as Miettinen (1998) and Collette and
Siarry (2003). Some methodologies define a single
measure and then seek the ‘‘best’’ solution relative
to that measure. Other methodologies seek to
generate all of the nondominated solutions and this
is the approach taken here. Now these methods deal
with the multiobjective problem, in some sense, by
reducing it to a single objective programming
problem using certain parameters and solving the
single objective problem. The key concern is how to
appropriately and systematically set or vary para-
meters to generate the whole nondominated set.
Since we make no research contribution in this area,
the following discussion is restricted to only those
concept used in this research. Readers interested in
additional information are directed to the references
listed previously.

This research uses a modification of the Lp ¼ 0

metric that forms a linear combination of the k

objectives using weights, li so that the problem
becomes Minx2X z ¼

Pk
i¼1li½f iðxÞ�. As with all Lp

metrics, each li is a scalar and
Pk

i¼1li ¼ 1. It is also
relatively easy to solve the multiobjective optimiza-
tion problem using this approach because basic
strategies associated with single objectives apply. It
should be noted, however, that it is impossible to
guarantee that the entire set of nondominated
solutions will be found with this approach (Eddy
and Lewis, 2001) regardless of many values of the
weights are selected.
2.2. Multiobjective scheduling

There is an ever-growing body of research on
multiobjective scheduling and it would be impos-
sible to pay proper credit to all contributors. Hence,
we focus on a few references that are representative
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of work in the field and most directly applicable to
this research.

Historically, the bicriteria scheduling problem has
been particularly important. In 1988, Dileepan and
Sen suggested that research at that time tended to
use one of two approaches to these problems,
namely, consider one of the criteria as the objective
and the other as a constraint or combined the
criteria into a single objective. Methods to solve the
bicriteria problem have taken many forms including
the use of an assignment model (Chen and Bulfin,
1989), branch and bound (Sen and Gupta, 1983),
and dynamic programming (Cai and Lee, 2000), to
name a few.

There have also been several literature reviews
over the years. Fry et al. (1989) not only review the
literature but suggest a classification scheme for
multiobjective scheduling problems while Nagar et
al. (1995) provide a good summary of the research
related to regular measures up to early 1990s.
Raghavachari (1988) provided a survey for schedul-
ing problems having nonregular performance mea-
sures. The survey by T’Kindt et al. (2001) is an
excellent paper that gives a technically insightful
look by suggesting that the research can be placed in
one of three categories: one-machine job shops,
parallel machine job shops, and flow shops. Their
extensive bibliography of more than 100 references
contains at least half that relate to the bicriteria
problem for a single machine. Regardless of the
exact nature of the objectives, these studies offer a
wide array of heuristics, branch-and-bound algo-
rithms and other algorithms, MIP formulations,
and dynamic programming models attempting to
find the set of either strictly or weakly efficient
solutions, or subsets of both. One particularly
significant result is that the bicriteria problem is
solvable in polynomial time if the formulation
involves minimizing the sum of total completion
time and maximum cost (Hoogeveen and van de
Velde, 2001).

It is noted that the general scheduling problem is
Nondeterministic Polynomial-time Complete (NPC)
which means that all known algorithms that define
an optimal solution require exponentially increasing
computational time as the problem size increases;
therefore, heuristic methods which provide approx-
imate solutions are justified and are required when a
practical situation can be modeled. Approximation
algorithms like GA, tabu search, and simulated
annealing are extensively used to find approximate
solutions to such problems (Pirlot, 1999) although
the combinatorial nature has been reported as a
reason local search techniques are susceptible to
becoming stuck in local optima (Ponnambalam
et al., 2001). Khoo et al. (2000) concluded that since
many reasonably sized scheduling problems can be
resolved using GA, it should also work on the
multiobjective problems with the weighted objective
approach. Finally, Koppuraviuri (2000) investi-
gated the effectiveness of using a GA to schedule
flowshops with multiple nontraditional objectives
and found the general approach feasible although
the experiment work was very limited in scope.

2.3. Random-key genetic algorithm

GA’s were introduced by Holland (1975) as a
methodology for finding approximate solutions to
complex problems by mirroring aspects of biologi-
cal evolution. The basic framework he proposed
involved representing solutions to a problem as
‘‘chromosomes’’ and generating future generations
by ‘‘reproduction.’’ Chromosomes are chosen to
reproduce randomly and experience changes ran-
domly, as organisms do in the natural environment.
The probability that a particular chromosome is
selected for reproduction is based on how well it
solves the problem in a process analogous to
survival of the fittest. The process of creating
generations continues until some termination con-
dition is reached, at which point the best chromo-
some is chosen as the solution.

The chromosomal representation of a solution is
an important design feature of a GA. Chromosomes
are generally strings of numbers that represent the
solution to the problem or can be decoded to
represent the solution. Sometimes the individual
numbers are 0s and 1s but other possibilities exist
like strings of non-negative integers. While many
types of evolutionary operators have been intro-
duced into the GA methodology based on their
biological counterpart (e.g., mutation), a key
operator is reproduction, and this particular opera-
tor is an important problem when applying GAs to
sequence dependent problems like scheduling. For
example, the simplest form of reproduction is to
select two chromosomes from a generation, ran-
domly select a point to split each into two pieces,
and splice the front end of the first chromosome
with the complementary end from the other and
vice versa, to form two different chromosomes,
each of correct length. For a scheduling problem,
one possible chromosomal representation of the
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solution is simply an n-dimensional vector with the
numbers 1 through n, and the solution would be to
traverse the cities in the order presented in the
chromosome. The infeasibility problem is easily
seen in the simple example of crossover illustrated in
Fig. 1.

Consider two feasible schedules, 1! 2! 3!
4! 5! 6! 7! 8 and 4! 3! 2! 1! 7!
8! 5! 6 in the figure that are selected at random
from the initial population. Each tour is split at a
randomly selected point, after the second job in this
example, and the ends are spliced together. The
resulting schedules are, in general, likely infeasible
since each new chromosome most often has several
jobs scheduled twice and others not visited at all. In
the example, the first schedule resulting from this
operator, 1! 2! 2! 1! 7! 8! 5! 6, has
a schedule that contains jobs 1 and 2 twice while
omitting jobs 3 and 4. This difficulty of maintaining
feasibility when applying GA’s to sequencing
problems like scheduling has been addressed in a
number of ways. Some have proposed ‘‘repair’’
algorithms to recreate feasible schedule after the
genetic operator is applied; however, the ‘‘repair’’
algorithm can consume a considerable amount of
time and can inhibit convergence (Michalewicz,
2000). A better alternative is to use an alternative
chromosomal representation like the one introduced
by Bean (1994) in which a random numbers
encoding structure is used, resulting in the so-called
Random Keys Genetic Algorithm (RKGA). The
structure proposed by Norman and Bean (1999) for
a multiple machine scheduling problem assigned a
real number to each job. The part of the number to
the left of the decimal was used to assign the
machine and the part to the right of the decimal
(e.g., the ‘‘fraction’’) was used to assign the job
sequence. A simple construct using this structure for
our example in Fig. 1 would be to let the number in
1 2 3 4 5 6 7 8 4 3 2 1 7 8 5 6

1 2 3 4 5 6 7 8 4 3 2 1 7 8 5 6

1 2 3 4 5 6 7 84 32 1 7 8 5 6

Feasible Schedule #1 Feasible Schedule #2

Infeasible Schedule Infeasible Schedule

Fig. 1. Illustrative example of schedule infeasibility during

traditional GA crossover.
the left-most slot correspond to the location in the
schedule of job 1. The next slot to the right is
the location for job 2, etc. Using this approach, the
infeasible schedule at the right of Fig. 1 can be made
feasible simply by how it is decoded. That is, the
new decoding with now be 1! 4! 2! 3! 7!
8! 5! 6 if we break ties left to right. Hence, the
RKGA structure allows the proven evolutionary
operators in GA’s to be used on sequencing type
problems like scheduling and maintain feasibility.

The mutation operator is important to GA’s
because it helps avoid becoming trapped in local
optima. Implementing mutation in a tradition
fashion would create an infeasibility problem
similar to the one described for crossover; however,
pairwise interchange is a technique that has been
successfully used in scheduling metaheuristics and is
our choice in this research (Croce, 1995). This
technique operates by randomly selecting jobs i and
j from the schedule and interchanging their posi-
tions. Croce (1995) describes the four different types
of pairwise interchange techniques: (1) Adjacent
Pairwise Interchange, (2) Non-Adjacent Pairwise
Interchange, (3) Extraction and Forward Shifted
Reinsertion, and (4) Extraction and Backward
Shifted Reinsertion. We did not find any recom-
mendation in the literature regarding one of these
being preferred to the others, so this research uses
adjacent pairwise interchange.

To summarize, this research has adapted the basic
RKGA structure used by Bean (1994) to this
scheduling application. Each generation contains
of 20 chromosomes (schedules) and evolution
proceeds using the crossover mechanism discussed
earlier with adjacent pairwise interchange.

3. Research approach

To address the initial objective of investigating
the impact of including realistic nontraditional
requirements in developing a schedule for a single
machine job shop, resolving a multiobjective sche-
duling problem is required. We have shown that the
literature suggests RKGA could be an effective tool
for generating Pareto optimal solutions and have
elected to use an experimental research approach to
pursue this possibility. The first task is to show that
RKGA can, in fact, be used to generate point on the
Pareto frontier, which is accomplished using two
traditional objectives. Then, settings of the RKGA
parameters are determined which yield good
approximate solutions in a reasonable amount of
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time and, finally, this platform is adopted to
experimentally investigate the inclusion of nontradi-
tional requirements.

A classic single machine job shop has been assumed
with all jobs and their attributes—traditional and
nontraditional—known in advance. It is assumed that
the schedule has more than one objective and might
include some constraints related to the job attributes.
The multiple objectives are converted to a single
objective using the weighted sum approach and
Pareto optimal solutions are subsequently found
using RKGA. This type of experimental approach
is widely used because the general scheduling problem
is NPC; however, the significant drawback is that one
must be very careful in generalizing any results and
suggesting extensions to other scenarios.

3.1. Objective and constraints

This research utilizes combinations of two tradi-
tional and two nontraditional requirements in single
machine job shop scheduling with n jobs. The first
traditional element is the objective to minimize total
flow time. The flow time of job j, Fj, is defined as the
difference between the completion time of the job,
Cj, and the earliest possible start time. Since all jobs
are available when the schedule is constructed, all
can start at time zero and

F ¼
Xn

j¼1

F j ¼
Xn

j¼1

Cj .

The second traditional element is also an objec-
tive, minimizing maximum tardiness. The tardiness
of job j, Lj, is defined as the difference between
completion time, Cj, and due date, dj, if the job is
late. Hence,

Lj ¼ maxðCj � dj ; 0Þ

and the maximum tardiness, L, is

L ¼ max
j
½Lj � ¼ max

j
½maxðCj � dj ; 0Þ�.

Note that the optimal solution for each of these
objectives taken separately is well known when
scheduling a single machine job shop. Ordering jobs
using the shortest processing time first rule minimizes
the total flowtime while ordering the jobs using the
earliest due date first rule minimizes the maximum
tardiness. These facts are used during the experi-
mentation as benchmarks for the RKGA and to
provide a theoretically known point on the Pareto
frontier when either of these objectives is considered.
There are a number of nontraditional objectives
and constraints that are encountered in practice but
not addressed in the scheduling literature. For
example, consider an assembly line that produces
a single style car but with either left or right hand
drive. It would be highly desirable to schedule as
many automobiles as possible with the steering on
one side before switching so that the line can be fed
from one side for as long as possible. In this context,
this is a nontraditional objective. On the other hand,
consider a production line making a component in
different colors that must be visually inspected by a
human. It is well known that the effectiveness of the
inspector is enhanced if the colors are routinely
different, so a schedule in this situation might
require that no more than a certain number of the
same color components be schedules consecutively.
This is an example of a nontraditional constraint. In
our experience, schedules in real situation are
influenced as much by these nontraditional objec-
tives and constraints as they are by traditional
measures like flow time and lateness.

In this research, we try to capture one nontradi-
tional objective and one nontraditional constraint.
To illustrate these, let each job to be scheduled
possess one of three attributes: a, b, or c. The
nontraditional objective is called maximum cluster-
ing and seeks to keep as many jobs with attribute a

together a possible. The nontraditional constraint is
called minimum spacing and requires that at least n

jobs with attribute c be scheduled between two jobs
with attribute b.
4. Experiments and results

4.1. RKGA feasibility

To explore the feasibility of using RKGA in the
setting of bicriteria scheduling, a base case was
established using the two traditional objectives. This
scenario is found in the literature so a qualitative
comparison could be made regarding the Pareto
Frontier. Since the two objectives are minimize
mean flowtime and minimize maximum tardiness,
the weighted objective is

Min z¼ lF þ ð1� lÞL

¼ l
Xn

j¼1

Cj

 !
þ ð1� lÞ max

j
½maxðCj � dj ; 0Þ�

� �
,

where 0plp1.
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To empirically investigate the convergence of the
RKGA, a 50 job problem was used and l was set to
0.05, 0.5, and 0.95. The fitness value of the best
schedule and the average of all schedules were
recorded. All three values of the weights yielded similar
results exemplified by Fig. 2 that reflects l ¼ 0.5.

The basic structure found in Fig. 2 was seen in all
experiments. There are substantial improvements
during nearly all generations at the beginning and
then a period of no improvement in the fitness
function. By generation 4000, the GA had found a
reasonably good solution in all test cases after which
time there is a relatively long period of no
improvement. When the algorithm is extended to
15,000 generations, some of the scenarios revealed
that a local optimum had been found and a further
improvement was possible as illustrated by the
example in the figure. In other cases, this was not
seen and the solutions found after 4000 generations
remained the best for the remaining generations.

Before finalizing the number of generations to use
in the experimental study, we thought it important to
compare these results with the alternate approach of
replicating each experiment several times for 5000
generations but using a different starting point with
each. The result was that this approach found a
solution that was at least as good as the longer
generation runs in all cases and, in some, the solution
was better. For example, when the base case scenario
was tested with l ¼ 0.85, replicating five replication
using 5000 generations each yielded a best weighted
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Fig. 2. Fitness values for the average a
fitness value of 212,711 while running the RKGA for
25,000 iteration produced 218,686.

Based on these experimental observations, it was
decided that each of the experiments would be
replicated five times with each replication consisting
of 5000 generations. Although this has not been
proven, our experience with these problems lead us
to speculate that larger scheduling problems with
randomly generated data appear to have a number
of solutions that represent local minima with
objective function values quite close. For example,
consider a schedule involving 50 jobs that has
several similar jobs located rather close together in a
near optimal sequence. Switching the two would
have a small impact on the objective function (i.e.,
the fitness function in the RKGA); hence, if the
RKGA initially converges to one that is not globally
optimal, it has a difficult time finding others that are
slightly better.

4.2. Experimentation with the traditional and

nontraditional requirements

Three different combinations of traditional and
nontraditional requirements are investigated,
namely: (1) two traditional objectives, (2) one
traditional and one nontraditional objective, (3)
one nontraditional objective and one nontraditional
constraint. Each of these scenarios is investi-
gated with environments that include 20, 30, and
50 jobs.
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To quantify nontraditional requirements, a pen-
alty function approach is used that are analogous to
those found in algorithms targeted at constrained
nonlinear optimization problems. In the case of
nontraditional objectives, a progressive penalty is
used to reflect the degree to which schedules do not
meet the objective. For nontraditional constraints, a
severe penalty is imposed if the constraint is not met
while a zero penalty is assigned if it is met. These
penalty values are included in the fitness function so
that schedules that infeasible objectives or less
desirable objectives are selected less often in the
subsequent generation. For example, a function like
the one illustrated in Fig. 3 was used to model
maximum clustering. In this example, there were 30
0
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12000
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P
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Fig. 3. Structure of penalty function used with nontraditional

requirements.
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Fig. 4. Pareto frontier for two tra
jobs with attribute a and 20 with other attributes.
Using the function illustrated in Fig. 3, if all 30 jobs
were consecutive in the schedule there would be no
penalty; however, if only 20 were consecutive the
penalty would be $3333. The nontraditional con-
straints were modeled similarly but with a step
function that had a value of 0 if the constraint is
satisfied and a very large number if not.
4.2.1. Two traditional objectives

The Pareto frontier for the 20 job problem with
the criteria of minimizing maximum tardiness and
minimizing total flowtime is illustrated in Fig. 4.
This figure illustrates the Pareto frontier that is
generated by varying the weights between 0 and 1
and the general shape is consistent with similar
research found in the literature. Although it is
impossible to see on the graph, several of the points
were obtained for more than one value of l; that is,
some of these solutions were either optimal for
several different weights or there was a local
minimum that the algorithm could not escape.
Notice that with the small number of jobs, only four
unique levels of tardiness were observed in the
solutions found by the RKGA. The cluster at 4490
time units of maximum tardiness was obtained
for values of l between 0.95 and 0.8 while
cluster at 4364 were found for l between 0.8 and
0.5. The final points were determined for the other
values of l.
42000 44000 46000 48000
ime (time units)

λ=0.0

ditional objectives, 20 jobs.
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To gain some insight into the nature of the
solutions, Table 1 shows the schedules that corre-
spond to these points on this Pareto frontier for the 20
job problem. The solutions are identified by the value
of l used to generate them as indicated in the top row.
Notice how certain jobs tend to always be at the first
Table 1

Schedules for selected values of l, two traditional objectives, 20

jobs

Weights (l)

1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0

2 14 2 2 2 2 2 2 2 2 2 2 2 11

10 10 10 18 10 10 10 10 10 10 18 14 9 5

18 12 18 14 14 18 18 14 14 14 10 10 10 15

14 5 14 17 18 14 14 18 17 18 14 12 14 19

17 2 17 12 17 17 17 17 9 17 17 15 18 2

12 9 12 20 12 20 12 12 19 12 12 19 17 14

20 15 20 9 9 9 20 15 18 16 9 5 4 18

9 17 15 10 15 4 9 19 12 20 5 18 12 17

15 18 19 4 20 12 4 20 15 9 19 17 19 3

19 20 9 13 19 19 11 9 5 19 4 20 5 16

5 19 5 11 4 5 5 5 20 5 11 9 20 20

4 13 13 5 6 15 15 7 13 15 20 13 13 9

13 4 4 15 7 13 19 8 7 13 15 4 7 10

7 7 7 19 16 7 3 13 11 4 16 7 16 8

11 16 11 6 11 16 7 4 16 7 8 16 11 13

16 11 6 7 5 11 16 16 6 11 13 11 15 4

6 6 1 16 8 6 8 11 8 6 6 6 6 6

8 1 8 1 1 8 13 6 3 8 7 8 3 12

1 3 3 3 3 3 6 3 4 3 3 3 8 7

3 8 16 8 13 1 1 1 1 1 1 1 1 1
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Fig. 5. Pareto frontier for two tra
of the schedule like 2, 10, 14, and 18 while others like 1
and 3 are always at the bottom. As the value of each
objective function become more or less important,
there seem to be clusters of jobs in the middle that
gradually rearrange to produce the various solutions.
One observation here is that for these objectives and
this example, there appear to be some schedules that
are reasonably robust to the varying weights. While
this is clearly a function of the particular parameters
of the specific problem, it would be a very important
result were it to occur in practice.

Fig. 5 shows the Pareto frontier for the 50 job
problem. Notice the clustering along the discrete
values of tardiness has vanished, a fact that we
believe is due to the increase in the number of
possible schedules and, hence, more possible values
of tardiness. Although the solutions for these Pareto
points are not listed to conserve space, this
conjecture is supported by the fact that the pattern
of certain jobs being located in certain general areas
of the schedule is not seen as it is in Table 1. For
reference, these experiments were executed on a Sun
Fire UNIX machine with two 900MHz processors
and 8GB of RAM. On average, each replication of
the experiments including 20, 30, and 50 jobs took
about 150, 180, and 900 s, respectively.

4.2.2. One traditional and one nontraditional objective

We now turn attention to nontraditional require-
ments. This first case explores one traditional objective
(minimize total flowtime) and one nontraditional
262000 267000 272000
me (time units)

λ=0.0

ditional objectives, 50 jobs.
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objective (minimize clustering of an attribute). While
the problems with 20 and 30 jobs revealed a Pareto
frontier similar to the two traditional objectives,
the 50 job case appeared a bit different as illustrated
in Fig. 6. Notice that the points tend to lie on near
parallel lines with respect to the maximum clustering
objective.

Recall that this objective is based on the
clustering of an attribute with three attributes;
hence, it appears that this discrete nature creates
preferred levels for this objective and the RKGA
tends to converge to local minimum of the tradi-
tional objective on the levels of the nontraditional
one. As noted before, we suspect that by randomly
assigning the job data, the clusters might actually
reflect one true minimum with two or three jobs
switched to provide a small difference in objective
function value but not enough to redirect the
RKGA.

4.2.3. One nontraditional objective and one

nontraditional constraint

We use the term nontraditional constraint to
describe situations like those in nontraditional
objectives but now the relationships are required;
hence, they are now constraints. The example used
here centers on minimum spacing in which a certain
number of jobs with a particular attribute are
required to be between two jobs with another
attribute. This situation has been captured using a
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Fig. 6. Pareto frontier for one traditional an
penalty function but now, rather than a smooth
function reflecting a degree of discontent as in Fig.
3, we use a step function that applies a severe
penalty to any schedule that does not meet the
requirement and zero penalty to schedules that have
the minimum spacing required.

To test this approach, the fitness function in the
RKGA is modified to be the sum of a penalty function
similar to Fig. 3 to model the maximum clustering
objective plus the step function to model the nontradi-
tional constraint. The magnitude of the penalty
associated with not meeting the constraint was on the
order of twice the maximum penalty associated with the
nontraditional objective. Scenarios involving 20, 30,
and 50 jobs were resolved and, in all cases, the
schedules met the minimum spacing constraint. Hence,
we conclude that the step penalty function is an
effective means of modeling a nontraditional constraint.

One extension from our experience in practice
was to see if this approach could be used for ‘‘soft’’
constraints; that is, a constraint that could be
violated if the payoff was sufficiently large. To
explore this extension, we treated the nontraditional
constraint as a second objective and varied the
weights as we did in the two objective scenarios. The
nontraditional constraint was again modeled as a
step function with each violation incurring max-
imum penalty. Weights, the sum of which are one,
were associated with each and subsequently varied
as before. Our intent idea was that when the weight
0 280000 300000 320000 340000 360000

me (time units)

λ=0.0

d one nontraditional objective, 50 jobs.
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Table 2

Objective function values for one nontraditional objective and

one nontraditional constraint

Weights (l) Maximum

cluster

Minimum

spacing

Fitness value

1 17297 7000 17297

0.9 17567 4000 16210

0.8 17297 4000 14637

0.75 17297 4000 13972

0.7 17297 3000 13008

0.65 17297 2000 11943

0.6 17297 0 10378

0.5 19459 1000 10229

0.4 17297 1000 7518

0.3 17297 0 5189

0.2 18108 0 3621

0.1 27567 0 2756

0 57297 0 0
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associated with the nontraditional constraint is
reduced, the constraint become soft. At some point,
we expected to see the constraint being violated as
the objective function became more important and
this is exactly what happened. The objective
function values for 30 job problem are given in
Table 2.

When the weight assigned to minimum spacing is
zero (l ¼ 1) the constraint is violated frequently as
expected; however, as the weight on minimum
spacing is increased, the constraint is satisfied more
often until it is satisfies completely for all weights
beyond a certain point. This result suggests that this
approach to modeling soft constraints in the RKGA
is consistent with intuition.

5. Conclusions

In this research, we have documented a metho-
dology by which nontraditional requirements fre-
quently found in practice and based on job
attributes can be included in quantitative ap-
proaches to finding schedules for single machine
job shops. This methodology is based on penalty
functions and includes the ability to accommodate
the nontraditional requirements as part of the
objective function, as a hard constraint that must
be met for a schedule to be considered feasible, or as
a soft constraint that might be violated if the benefit
is sufficiently large. In addition, it was experimen-
tally shown that RKGA is an effective technique for
finding approximate Pareto optimal solutions when
LP ¼ 0 metric is used. In particular, good solutions
are found by the 15,000th generation with a
population size of 20; however, we found that
running more replications of 5000 generations each
where each replication had a randomly selected
initial population was even more effective in finding
the best solution for a scenario. This experimentally
based knowledge was then used to investigate three
scenarios: (1) two traditional objectives, (2) one
traditional and one nontraditional objective, and (3)
one nontraditional objective and one nontraditional
constraint. Each of these scenarios was imposed on
single machine job shops with 20, 30, and 50 jobs.
The results suggested that using the RKGA and the
LP ¼ 0 measure effectively finds good solutions
across all scenarios. Several interesting nuances
were noted such as the tendency, in certain
situations, for segments of the schedule to remain
essentially unchanged for over a range of weights.
We hypothesize that this robustness could be
valuable in practice because it suggests a decision
maker might not be required to precisely define the
relative weights between the objectives; rather,
solving the problem for a ‘‘best guess’’ will yield a
solution that will have segments of the schedule that
are optimal over some range of weights.
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