
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Minimizing total weighted tardiness on a batch-
processing machine with incompatible job families
and job ready times

Mary E. Kurz & Scott J. Mason

To cite this article: Mary E. Kurz & Scott J. Mason (2008) Minimizing total weighted tardiness on a
batch-processing machine with incompatible job families and job ready times, International Journal
of Production Research, 46:1, 131-151, DOI: 10.1080/00207540600786665

To link to this article: https://doi.org/10.1080/00207540600786665

Published online: 16 Nov 2007.

Submit your article to this journal

Article views: 228

View related articles

Citing articles: 17 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/loi/tprs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207540600786665
https://doi.org/10.1080/00207540600786665
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207540600786665
https://www.tandfonline.com/doi/mlt/10.1080/00207540600786665
https://www.tandfonline.com/doi/citedby/10.1080/00207540600786665#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207540600786665#tabModule

International Journal of Production Research,
Vol. 46, No. 1, 1 January 2008, 131–151

Minimizing total weighted tardiness on a batch-processing

machine with incompatible job families and job ready times

MARY E. KURZ*y and SCOTT J. MASONz

yDepartment of Industrial Engineering, Clemson University, 110 Freeman Hall, Clemson,

SC 29634-0920, USA

zDepartment of Industrial Engineering, University of Arkansas, 4207 Bell Engineering Center,

Fayetteville, AR 72701, USA

(Revision received December 2005)

Semiconductor wafer fabrication facilities (‘‘wafer fabs’’) strive to maximize
on-time delivery performance for customer orders. Effectively scheduling jobs on
critical or bottleneck equipment in the wafer fab can promote on-time deliveries.
One type of critical fab equipment is a diffusion oven which processes multiple
wafer lots (jobs) simultaneously in batches. We present a new polynomial time
Batch Improvement Algorithm for scheduling a batch-processing machine to
maximize on-time delivery performance (minimize total weighted tardiness) when
job arrivals are dynamic. The proposed algorithm’s performance is compared to
previous research efforts under varying problem conditions. Experimental studies
demonstrate the effectiveness of the Batch Improvement Algorithm.

Keywords: Heuristics; Batch-processing; Scheduling; Semiconductor
manufacturing

1. Introduction

The integrated circuits (ICs) at the heart of today’s technology age require a
considerable amount of time and money to manufacture. These ICs are
manufactured in ultra clean wafer fabrication facilities (‘‘wafer fabs’’). Wafer fabs
often contain 70þ different types of processing tools, each of which can cost
anywhere from U. S. $50,000 to $10,000,000. In order to mitigate the effects of both
planned and unplanned tool downtime, multiple tools of each type are operated in
parallel in the wafer fab (‘‘parallel machines’’). In total, current generation 200-mm
wafer fabs usually require capital investments totaling US $2 billion in order to
become a reality. After making this size of an investment in manufacturing capacity,
IC manufacturers clearly strive to sell large volumes of their products. However,
many companies compete in the same product space, affording customers the

*Corresponding author. Email: mkurz@clemson.edu

International Journal of Production Research

ISSN 0020–7543 print/ISSN 1366–588X online � 2008 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540600786665

opportunity to buy elsewhere if a particular manufacturer cannot meet its quoted
product shipment or due dates. One way to measure a company’s delivery
performance is to calculate the total weighted tardiness TWT¼

P
wjTj.

A considerable amount of research has been conducted on efficiently scheduling
jobs on production machines to maximize on-time delivery. Even though appearing
to be quite simple, some single machine scheduling problems cannot be solved to
optimality within any reasonable amount of time. For example, the single machine
scheduling problem in which the maximum job lateness is to be minimized,
commonly denoted as 1kLmax in the notation of Lawler et al. (1982), is easily solved.
However, simply adding job release times (i.e., not all jobs are ready for processing at
time t¼ 0) results in the 1jrjjLmax problem. This problem is in the class NP-hard, as
it is believed that no method exists to obtain the optimal solution in any practical
amount of time (Lenstra et al. 1977). The ability of some tools to process multiple
production jobs simultaneously in batches, such as diffusion ovens in semiconductor
manufacturing, further complicates the already NP-hard scheduling problem.
This further complication results from the large number of potential batches that
must be evaluated for scheduling.

While recognizing the importance of the parallel machine environment, we have
focused our initial research efforts on the single batch-processing machine
environment, where each production job belongs to one of several product families.
Several jobs in the same family may be processed in the same batch, while jobs from
different families may not, reflecting the existence of incompatible families. This is
typical of processing steps late in the semiconductor manufacturing process flow,
such as metal deposition steps, that are visited by wafers containing differentiable
product types. Further, each job has its own unique priority or weight, release time,
and due date. As our objective is to maximize the wafer fab’s delivery performance of
customer orders, the scheduling problem under consideration can be denoted as
1jrj, p� batch,incompatiblej

P
wjTj.

As the optimal solution to this or any other NP-hard scheduling problem cannot
be obtained directly in a reasonable amount of time, researchers typically employ
heuristic approaches to obtain ‘‘good’’ solutions to these problems. In this paper,
we present an adaptation of Mehta and Uzsoy’s (1998) batch apparent tardiness cost
(BATC) algorithm, an adaptation of Kanet and Li’s (2004) WMDD algorithm, and
a new Batch Improvement Algorithm (BIA). Through extensive experimental test
cases, we demonstrate the viability of the BIA for minimizing TWT for several
families of jobs being processed on a single batch-processing machine under dynamic
job arrivals. We distinguish between static job arrivals, in which all jobs are available
for processing at time t¼ 0, and dynamic job arrivals, in which jobs arrive at times
distributed through time. Note that in both cases, job arrival times are known
a priori, distinguishing the static and dynamic cases from the on-line case.

The remaining sections of this paper are organized as follows. We discuss the
batch machine scheduling problem in section 2, providing a review of previous
research efforts that focus on this problem. Next, section 3 presents the notation used
in the paper, while section 4 reviews the BATC algorithm of Mehta and Uzsoy (1998)
and the WMDD algorithm of Kanet and Li (2004), and presents several extensions
of each. Section 5 contains the proposed Batch Improvement algorithm (BIA).
Section 6 presents the experimental plan and results. Finally, we present our research
conclusions in section 7, along with our directions for future research.

132 M. E. Kurz and S. J. Mason

2. Previous Research

The scheduling of batch-processing machines is a complex and difficult problem.
A batch-processing machine may process from one up to B jobs at a time, where
B is the maximum batch size allowed by the machine. Given n jobs to be
scheduled, Chandru et al. (1993) point out that at most n batches and at least
[n/B] batches will be required to process all jobs. The number of potential batches of
size B that can be formed from n jobs is ðnBÞ, the number of potential batches
of size B� 1 that can be formed from n jobs is ð n

B�1Þ, and so on (Mason et al. 2002).
We refer the reader to Brucker et al. (1998) for a comprehensive discussion of
the complexity of scheduling a single parallel batch-processing machine under
regular scheduling criteria, noting that neither non-zero ready times nor
incompatible families are considered. Given the complexity of this problem,
considerable research effort has been dedicated to the batch-processing scheduling
problem.

Early work involving batch-processing machines focused on the single machine
problem. Coffman et al. (1990) discovered that to achieve an optimal schedule,
with regard to minimized overall flow time, the processing times of the batched
jobs should be non-decreasing throughout the schedule. Motivated by the
long processing times of the burn-in operations of semiconductor testing,
Chandru et al. (1993) developed the ‘‘full batch shortest processing time’’
(FBSPT) and ‘‘greedy ratio’’ (GR) heuristics to solve the single machine
and parallel machines batching problems where all jobs are present at initial
scheduling (i.e., all jobs have the same ready times). Both heuristics function
based on the jobs being previously ordered by least processing time to greatest
processing time.

In both cases full batches are formed and the machine is kept busy as long as any
jobs remain unprocessed. However, FBSPT does not account for the case when
widely varying processing times exist between two or more jobs. To account for this,
the GR heuristic tests the ratio of the processing time of the last job in a potential
batch divided by the number of jobs in that batch. The minimum ratio is selected and
those jobs are batched together while all other jobs wait for a later batch.
They determined that the GR heuristic performed better in minimizing the total
completion time for both the single machine and parallel machine cases. Therefore,
if two jobs have processing times which are very different, these are not likely to be
batched together.

Uzsoy (1995) extended his previous research to a single batching machine where
jobs from different job families cannot be batched together. He presents several
heuristics to address these types of problems aimed at minimizing maximum lateness
and maximum completion time. Hochbaum and Landy (1997) investigated both the
single and parallel machine cases and developed the Fixed Sequence heuristic for the
single machine case, which was proven to have a worst case performance of two
times the optimal schedule. Lee and Uzsoy (1999) discussed minimizing makespan
on a single, batch-processing machine with dynamic job arrivals, solving this
problem with several additional heuristics.

Sung and Choung (2000) discuss minimizing makespan under the dynamic
problem of different release times. Potts et al. (2001) look at two-machine batching
problems in an open shop, job shop, and flow shop, showing that the complexity

Minimizing total weighted tardiness on a batch-processing machine 133

involved in solving these scenarios is typically NP-hard. Van der Zee et al. (2001)
investigate batching situations which arise in the aircraft industry and developed a
forward looking strategy which looked at all machines in the near future, not simply
idle machines. Perez et al. (2005) address 1jrj, p� batch,incompatiblej

P
wjTj by first

forming batches and then scheduling those batches on the single machine. Various
dispatching rules are used for both steps. Mönch et al. (2005) consider Pmjrj,
p� batch,incompatiblej

P
wjTj and address jrj, p� batch,incompatible j

P
wjTj as a

subproblem by forming batches and selecting batches according to a priority index
which considers both the potential weighted tardiness of the current batch and the
jobs in the unscheduled batches. In both Perez et al. (2005) and Mönch et al. (2005),
the single machine schedule is created using a constructive rather than an
improvement algorithm.

The literature to date has addressed batch scheduling problems of both the single
and multiple machine cases, but has indicated few instances when an optimal
schedule is obtainable in a reasonable computational time. This is especially true
in the multiple machine case. Therefore, research continues to seek faster running
algorithms delivering better solutions to solve these problems. In most of the
research, prior to batch formation, all jobs are ordered from shortest to longest
processing times. This typically is done to minimize the total completion time metric.
In more recent research, the goal has shifted from minimizing total completion time
to minimizing functions based around meeting due dates of jobs. Specifically,
Brucker et al. (1998) show that 1jp� batchj

P
wjTj is NP-hard when 2�B5n.

In short, because of the computational complexity, no improvement method
currently exists for single or multiple server batch-processing machines in an
acceptable time frame.

3. Notation

Our notation closely follows that of Mehta and Uzsoy (1998). There are n jobs
belonging to m families, with each family j having nj jobs, j¼ 1, . . . ,m. Job i in family
j (‘‘job ij’’) has ready time rij, due date dij, and weight wij, i¼ 1, . . . , ni All jobs in
family j require Pj units of processing time, j¼ 1, . . . ,m. We assume that all jobs in a
family are indexed in non-decreasing order of ready time and non-decreasing order
of weighted due date for jobs with the same ready times, so that rij� riþ1, j and
dij/wij� diþ1/wiþ1, j 8j, 1� i5nj.

Jobs are processed on machines in parallel batches, meaning the jobs are
processed simultaneously. Let B denote the maximum batch size of each machine
and Bkj represent the k-th formed batch of family j. Let Rkj ¼ maxij2Bkj

rij
� �

be the
ready time of batch Bkj and Ckj represent the completion time of Bkj. No job or batch
may begin processing before its associated ready time. All jobs ij in batch Bkj share
the same completion time Ckj. If job ij2 Bkj and Cki4dij, job ij is tardy, and accrues
a penalty of wij (Cki� dij) units. If job ij is not tardy, no penalty is accrued. Penalty
values are summed over all n jobs to compute the total weighted tardiness of the
resulting schedule.

134 M. E. Kurz and S. J. Mason

4. BATC and WMDD based Priority Indexes

In this section we discuss two priority indexes from the literature. The BATC based
priority indexes are based in work by Mehta and Uzsoy (1998), who considered the
single batch-processing machine problem to minimize total tardiness. The WMDD
based priority indexes are based in work by Kanet and Li (2004) who considered
the single unit-processing machine problem to minimize total weighted tardiness.
In thiswork,weadapt theBATC index toaccount forweights andnon-zero ready times
and the WMDD index to account for batch processing and non-zero ready times.

Mehta and Uzsoy (1998) developed the batch apparent tardiness cost (BATC)
algorithm, adapting the apparent tardiness cost (ATC) heuristic of Vepsalainen and
Morton (1987). Mehta and Uzsoy proved that for the 1jp-batch, incompatiblej

P
Ti

problem, there exists an optimal solution which will contain full batches, except for
possibly the last batch in each family, and there exists an optimal solution in which the
jobs in each batch are consecutively indexed, when indexed in non-decreasing order of
their due dates. They use these two properties in order to define a greedy batch
formation method. In order to refer to it later, we define it here with some
modifications to suit our purposes which do not change the original results. Because
the Greedy Batch Formation algorithm can be completed in O(n logn) steps,
Algorithm PI’s complexity is O(n logn).

Greedy batch formation

(1) Index all jobs in each family in non-decreasing order of ready time and non-
decreasing order of weighted due date for jobs with the same ready times, so
that rij� riþ1, j and dij/wij� diþ1, j/wiþ1,j 8j, 1� i5nj.

(2) For each family j, form batches so that jobs 1j to Bj are in batch B1j, jobs
Bþ 1, j to 2B, j are in batch B2j and so on, until the last batch of each family
may have less than B jobs. Let kj¼ [nj/B] be the number of batches of family j
formed and K ¼

Pm
j¼1 kj.

We also provide the shell of the BATC algorithm as Algorithm PI, where we
replace the priority index BATC(Blj) with the notation PI(Blj).

Algorithm PI

(1) For each family j, form batches using the Greedy Batch Formation
Algorithm.

(2) Let i¼ 0 be the number of batches in the partial schedule.
(3) Let S(i) be the set of scheduled batches in the current partial schedule.

Initialize S(0) ¼Ø. Let t be the latest completion time of any batch scheduled;
t ¼ maxBlj2S ið Þ{Clj}. Initialize t¼ 0.

(4) Let U(i) be the set of unscheduled batches. (Note that this does not include
the concept of ‘‘eligible’’ batches). For each batch Blj in U(i), calculate a

Minimizing total weighted tardiness on a batch-processing machine 135

priority index PI(Blj). Let st ¼ argmaxBlj2UðiÞ{PI(Blj)}. Schedule Bst on the
single machine. Let i¼ iþ 1; update S(i), U(i) and t.

(5) If i¼K, stop. Otherwise, go to step 4.

Algorithm DWBATC

The full problem of interest includes both jobs with weights and non-zero ready
times. In order to accommodate weights in the priority index, we must remember
that the weights may be different for each job in each family. One approach could be
to create a composite batch weight that applies to each job in the batch. However, we
have chosen to incorporate the weights in the part of the priority index that considers
each job individually. If a batch has one job, we see that the priority index increases
as the job’s weight increases, reflecting our desire to schedule the batches with more
important jobs earlier.

When a problem has ready times, we want to discourage scheduling batches that
are not ready for processing. DWBATC will result in a lower priority index when the
batch’s ready time is higher, reflecting our desire to postpone batches for which we
will have machine idle time. However, we still consider all batches in U(i) as opposed
to making some batches ineligible.

Based on this discussion, we introduce the DWBATC priority index, as
shown in (1).

PIðBljÞ ¼DWBATCðBlj, tÞ ¼
1

pj
exp
�
P

ij2Blj
max ðdij � pj � tÞ=ðwijÞ, 0

� �
� Rlj

k �p

 !
ð1Þ

where k is a scaling parameter and �p is the average processing time of the remaining
batches (batches in U(i)\Blj). While equation (1) is somewhat similar to the BATCS
computation in Mason et al. (2002), DWBATC performs its calculations at the
individual job level, and then sums up these results in the negative exponential’s
numerator. This is different than BATCS, which performs its calculations at the
aggregated batch level.

Our construction of DWBATC also lends itself very well to additional
experimental evaluation of problem instances with static job arrivals and/or unit
job weights. Clearly, when jobs are all available at time 0 and are equally weighted
(i.e., rij¼ 0 and wij¼8ij), DWBATC reduces to the BATC rule of Mehta and
Uzsoy (1998). This reduction is obviously quite convenient (and in our opinion,
required) for comparison purposes with the original BATC rule. When jobs are
available at time zero but have non-identical weights, we will call the index
‘‘WBATC’’ while when jobs have non-zero ready times and have unit weights, we
will call the index ‘‘DBATC’’. In this manner, we have four indexes available
for further investigation.

Algorithm DBWMDD

Baker and Bertrand (1982) considered the single machine total tardiness scheduling
problem, developing the MDD (modified due date) algorithm. The overall idea is to
sequence the jobs in earliest due date order until such time as a job is late; at that
point, its new due date is considered to be the earliest time by which it can

136 M. E. Kurz and S. J. Mason

be completed. They calculated MDDi¼max{tþ pi, di} for each job i, where pi is the
processing time and di is the due date of job i. The next job to be scheduled has the
smallest value ofMDDi; the time t is then updated to the completion time of the most
recently scheduled job. Kanet and Li (2004) extended the MDD algorithm to attack
the single machine total weighted tardiness scheduling problem, creating the WMDD
index:

WMDDi ¼
1

wi
max pi, di � t

� �
ð2Þ

The WMDD index is used in the same manner as the MDD index in the MDD
algorithm. The definition of WMDDi incorporates the observation that the index
should reduce to the Weighted Shortest Processing Time rule (WSPT) when all
unscheduled jobs are tardy (as may occur when t is larger) in order to minimize the
total weighted tardiness.

In this research, we propose an extension of WMDD and MDD to the problem
with parallel-batch scheduling and non-zero ready times. We propose the
DBWMDD priority index in (3), which is used with Algorithm PI in the same
manner as the DWBATC priority index. We use the negative, so that we can still
select the batch with the largest index (as opposed to the smallest valued batch).
In general, we aggregate the values of the WMDD index for each job in the batch, in
order to accommodate the parallel-batch processing, and we incorporate the ready
time into the priority index, in order to incorporate non-zero ready times.

PIðBljÞ ¼ DBWMDDðBlj, tÞ ¼ �
X
ij2Blj

max pj, dij � t
� �
wij

� �
� Rlj ð3Þ

Clearly, when all jobs are available at time 0 and batches are of size 1 (i.e., rij¼ 0
8ij and B¼ 1), DBWMDD reduces to the WMDD rule of Kanet and Li (2004) When
jobs are available at time zero but have non-identical weights, we will call the index
‘‘BWMDD’’ while when jobs have non-zero ready times and have unit weights, we
will call the index ‘‘DB_MDD’’. In this manner, we have four more indexes available
for further investigation. When all jobs are available at time 0 and batches are of size
1 (i.e., rij¼ 0 8ij and B¼ 1), DBWMDD reduces to the WMDD rule of Kanet and
Li (2004).

5. Batch Improvement Algorithm (BIA)

Algorithms PI’s use of the Greedy Batch Formation Algorithm may not result in an
optimal batch schedule in the cases that jobs have ready times. This was discussed
in Mehta and Uzsoy (1998) and demonstrated by counterexample in Kurz (2003).
Clearly, Algorithms DWBATC and DBWMDD, and their variants, require full
batches which will unnecessarily and with potential negative consequence restrict the
solution. One heuristic method by which 1jrj, p� batch,incompatiblej ¼

P
wjTj may

be attacked could involve the creation of partial batches in a forward manner. We
could consider the jobs in some order and ask whether the given job should be added
to the current batch or be the first job in a new batch. However, another method
could involve creating n batches of one job each and then considering when to

Minimizing total weighted tardiness on a batch-processing machine 137

combine them. Because our objective is total weighted tardiness, we know that such
a schedule will provide an upper bound on the objective function.

Kurz (2003) provided two simple conditions for the Pm1jrj, p� batch, pj¼ pj
P

wjTj

(one single family) problem that demonstrated when it was advantageous to move a
job from a batch to the immediately previous batch, as long as that batch has room.
Theorem 1 says that if job 1i is in the k-th batch for family 1, Blk, and r1i4R1,k�1, then
moving job 1i to B1,k�1 will certainly not increase the total weighted tardiness. This
means that the total weighted tardiness will not increase if a job that does not increase
the batch’s ready time is added to the batch. Theorem 2 says that if 1i is in Blk,
r1i4R1,k�1 and C1,k�14r1iþP14R1,k�1þP1, then moving job 1i to B1,k�1 will
certainly not increase the total weighted tardiness. This means that the total weighted
tardiness will not increase if a job that does not increase the batch’s start time is
added to the batch. These two conditions are clearly true even when
considering moving a job from B1k to B1s where s5k, meaning the new batch for
the job may be any batch ‘‘before’’ the original batch. Moreover, while the problem of
interest in this paper is concerned with jobs in multiple incompatible families, the same
conditions hold true. These concepts motivate the development of the following
improvement algorithm, BIA. BIA operates by trying to smartly move jobs from
later batches to the current batch without increasing the starting time of the current
batch.

Initially, batches are formed greedily by considering the jobs sorted in
non-decreasing order of ready times, with ties being broken by non-decreasing
order of weighted due date. This initial job sequencing is made without regard to job
family designations. Batches of jobs in the same family are then formed by adding
jobs one at a time according to the sorted list until either (1) the current batch is full
(i.e., B same-family jobs have been grouped together) or (2) a different job family is
encountered, thereby forcing the formation of a new batch, given our incompatible
job families assumption. Assume that K batches have been formed and scheduled on
a single machine. The batches will be indexed by their position in the initial sequence
in this algorithm. Assume the k-th batch Bk starts its processing at time Sk and
finishes at time Ck.

If batches are initially created as suggested here, we know that we will never add
jobs to batch K� 1 from batch K in the initial step. Even if batches K� 1 and K were
of the same family, they would only exist as two different batches in the initial
solution if batch K� 1 were full. Therefore we start with batch K� 2, which will be
appropriate even if there are more than two families.

In step 1, we determine whether the current batch needs any jobs added to it.
If the current batch is the ‘‘0-th’’ batch, we have iterated through all the batched and
can stop. If the current batch is full, it clearly does not need any more jobs. If the
current batch is the last batch, there simply are no jobs after it which can be added
to it. Therefore, if the last batch is empty, delete it. In all other cases, we will begin
the search for jobs to add to the current batch.

Step 2 begins the search for jobs to add to the current batch by first determining
to which family the additional jobs should belong. If the current batch has jobs
already in it, it is clear in this case that the potential jobs to be added should belong
to this family, as described in step 2.1. If however, the current batch is empty, we
first need to determine if there are jobs in later batches which can be moved into
the currently empty batch without increasing the starting time of the immediately

138 M. E. Kurz and S. J. Mason

succeeding batch. In step 2.2, we form E, the set of jobs in later batches which are
ready before the preceding batch completes and would finish before the succeeding
batch starts. Figure 1 illustrates the process of determining the jobs in E. If E is
empty, we move all later batches up by one and begin BIA on the previous batch. If
E is not empty (step 2.2.2), we perform the sub-procedure AddToCurrentBatch(batch
k, set E), which finds the job in E with the highest total weighted tardiness, adds it to
the current batch, removes it from its previous batch and calls BIA from the moved
job’s previous batch. We will return to the current step upon completion of BIA.
Once we complete step 2, we have a batch that has space for at least one job and we
know the family to which the additional jobs should belong.

In step 3, we determine which jobs can be added to the current batch. This set
formation is much simpler than the analogous set formation in step 2.2; the eligible
jobs are those in later batches which have ready times no later than the current
batches start time.

In step 4, we add jobs to the current batch from E, formed in step 3, as long as the
current batch has room and E is not empty. Each batch which has jobs removed
from it must also have BIA performed upon it. Once step 4 is complete, we consider
the previous batch and begin BIA on that batch.

The complete algorithm is presented below. We first present the sub-procedure
AddToCurrentBatch, which requires the current batch number and a set of jobs
eligible to be added to it, and returns the batch number from which the added job
was removed. A complete example is included in the appendix.

Sub-procedure sourcebatch^AddToCurrentBatch(batch k, set E)

il� ¼ argmaxij2EfwijTijg

Pick the job with the highest weighted tardiness and move it to Bk

Let f be the batch to which il* belongs.
Bk¼Bk[il*
E¼E\il*
Bf¼Bf\il*
Return sourcebatch¼ f
(Step 0: Let k¼K� 2.)

k −1 K

empty

k k+1 K−1 k+2 to K−2 Batch

Ck−1 Sk+1

Sk+1 – Ck−1
Maximum processing time

for jobs eligible to be moved
from batches k+1 to K

Batches from which eligible
obs can be taken

Ck−1

Earliest ready time
for jobs eligible to be

moved to batch k

Figure 1. Finding jobs to add to the empty batch in BIA step 2.2

Minimizing total weighted tardiness on a batch-processing machine 139

Algorithm BIA(k)
1. Update the batch ready, starting and completion times and job weighted

tardiness values if needed.
1.1 If k¼ 0, STOP.
1.2 If jBkj ¼B, BIA (k� 1).
1.3 If k¼K and jBkj ¼ 0, K¼K� 1 and return.
1.4 If k¼K and jBkj40, return.
1.5 Else continue.

2. Let l be the family of the jobs in Bk.
2.1. If jBkj � 0, l is the family of any job in Bk.

All jobs in Bk are in the same family

2.2. IfjBkj ¼ 0, form E¼ {ij: rij�Ck�1,ij2Bg, g4k, pj�Skþ1�Ck� 1}.

These jobs will ‘‘fit’’ in the spot formerly filled by Bk

2.2.1 IfjEj ¼ 0 then Bk can be deleted, moving all later batches up

for g¼ kþ 1, . . . ,K
let Bg�1¼Bg

K¼K� 1
BIA(k� 1)

2.2.2 Otherwise, f¼ sourcebatch¼AddToCurrentBatch
(batch k, set E) BIA(f) Fill the open spot in Bf

3. Form E¼ {il: ril�Sk, il2Bg, g4k}.
4. While jBkj5B and jEj40

f¼ sourcebatch¼AddToCurrentBatch(batch k, set E)
BIA(f) Fill the open spot in Bf

5. BIA(k� 1)

6. Experimental plan

6.1 Competing heuristic approaches

The proposed Batch Improvement Algorithm (BIA) will be tested in a variety of
single machine, batch processing environments to determine its efficacy in producing
schedules that minimize TWT under varying job conditions. First, we consider
the static 1jp� batch j

P
Tj problem, comparing BIA with the BATC algorithm of

Mehta and Uzsoy (1998) and B_MDD. In this case, job j’s weight wi¼ 1, 8j. Next, we
consider the static 1jp� batch j

P
wjTj problem where in wj�DU[1,10], 8j. In this

case, BIA will be compared with WBATC, a variant of BATC that incorporates job
weights into the index calculation and BWMDD.

We then investigate the dynamic 1jrj, p� batch j
P

Tj problem that is character-
ized by non-zero job ready times and unit job weights. Here, a variant of BATC is
used that incorporates non-zero job ready times into the index calculation (DBATC)
as well as DB_MDD. Finally, we combine non-zero job ready times and non-unit
job weights to compare the performance of BIA to DWBATC and DBWMDD for
the dynamic 1jrj, p� batch j

P
wjTj problem.

Table 1 summarizes the problems considered in this computational study as well
as the approaches used to attack each of the problems.

140 M. E. Kurz and S. J. Mason

6.2 Experimental design

We pattern our experimental design after the one presented by Mehta and Uzsoy
(1998) to test the proposed algorithms in each of the cases mentioned in the previous
section (table 2). A total of nj jobs are created for each job family j¼ 1, . . . ,m. All
jobs in a given family require the same amount of processing time which is sampled
from the discrete probability distribution given in table 2. Three different values for
maximum batch size B are investigated, along with four different discrete uniform
distributions for the due date of job i in family j (i¼ 1, . . . , ni). Job due dates are
characterized both by due date range factor R and by due date tightness factor T;
job due dates are not family dependent. Finally, four different discrete uniform
distributions are evaluated for both the Dynamic Total Tardiness and Dynamic
TWT cases.

In total, the two static cases each contain 4� 4� 3� 1� 4¼ 192 design points,
while the addition of non-zero job ready times results in 4� 4� 4� 3� 3� 4¼ 576
design points for each of the two dynamic cases. As 10 replicates are generated
for each design point, a total of 3.840 static and 11 520 dynamic problem instances

Table 2. Experimental design used in random problem generation.

Problem factor Values used Total values

Jobs per family nj 30, 40, 50, 60 4
Number of families m 3, 4, 5, 6 4
Maximum batch size B 4, 6, 8 3
Family processing time (hrs) Pj P(pj¼ 2)¼P(pj¼ 4)¼P(pj¼ 16)¼ 0.2

P(pj¼ 10)¼ 0.3,P(pj¼ 20)¼ 0.1
1

Job ready time rj Static cases (S): rj¼ 0, 8j 1 (each S)

Dynamic cases (D): rj�DU
0, �Cmaxb c½ �

� 2 0:5; 1; 1:5f g Cmax ¼

Pm

j¼1

Pnj

i¼1
pj

B

3 (each D)

Job due date dij � DU �� �R
2

� �
; �þ �R

2

� �	

4

�¼Cmax(1�T); R2 {0.5, 2.5}; T2 {0.3, 0.6}
Total factor combinations 192 (each S)

576 (each D)
Replications per combination 10
Total problems 1920 (each S)

5760 (each D)

Table 1. Problem Approaches Investigated.

Problem Class Methods

1|p� batch |
P

Tj BATC, B_MDD, BIA
1|p – batch |

P
wjTj WBATC, BWMDD, BIA

1|rj, p� batch |
P

Tj DBATC, DB_MDD, BIA
1|rj, p� batch |

P
wjTj DWBATC, DBWMDD, BIA

Minimizing total weighted tardiness on a batch-processing machine 141

will be generated and examined. For each instance, the resulting schedule’s total
(weighted) tardiness will be recorded. When employing BATC, WBATC, DBATC,
and DWBATC, we employ a grid search to determine the value of the smoothing
parameter k that best minimizes TWT. In each grid search, we examine values of k
over the range 0.1 to 10 in increments (steps) of 0.1. To assess whether this grid
search and the proposed BIA are computationally feasible, we also measure the
computation time required to produce the schedule for each problem instance.

6.3 Computational results

Let G(h, i) denote the objective function value resulting from the schedule produced
by heuristic h on problem instance i. Further, heuristic h2H, whereH denotes the set
of all competing heuristics for a given scheduling problem class (e.g., BATC,
B_MDD, and BIA for the 1jp� batch j

P
Tj problem class). In order to assess the

performance of the competing heuristics, we compute the performance ratio
PRðhÞ ¼ Gðh, iÞ=ðminh2H Gðh, iÞÞ. For each problem instance i, the best value
of PR(h)¼ 1.000 signifies that heuristic h produces the schedule with the
lowest objective function value in comparison to the other competing heuristic
approaches.

Table 3 presents a high level overview of the experimental results for all four
problem classes under study. In the table, the bolded PR(h) value indicates the best
performing heuristic approach. While the BATC family outperforms the B_MDD
family and BIA for the zero ready time cases with and without job weights
(i.e., the first two results columns), BIA is able to produce higher quality solutions
for the more practical 1jrj, p�batch j

P
Tj and 1jrj, p� batch j

P
wjTj problem classes

and compared to the competition (see the last two results columns). The following
subsections examine the experimental results and required computation time
for each of the four problem classes under study. All experiments summarized
below were conducted on a SunFire V480 with a 900MHz processor and 8GB
of RAM.

6.3.1 1jp� batch j
P

Tj results. BIA outperforms both BATC and B_MDD in only
48 of the 1920 static total tardiness problem instances (i.e., in 2.5% of the instances).
Even though 100 different k values were examined to determine the ‘‘best’’
smoothing parameter value, BATC required only 0.36 seconds on average to conduct
the entire grid search and produce its superior results. Further, BATC produces the
best overall schedule in 89.7% of the static problem instances under study.
The minimum time required for BATC to produce a schedule was 0.07 seconds,

Table 3. Average PR(h) values for each problem class by heuristic family.

Problem Class BATC Family B_MDD Family BIA

1|p� batch |
P

Tj 1.032 (BATC) 1.133 (B_MDD) 3.342
1|p� batch |

P
wjTj 1.452 (WBATC) 1.517 (BWMDD) 1.488

1|rj, p� batch |
P

Tj 1.891 (DBATC) 2.245 (DB_MDD) 1.042
1|rj, p� batch |

P
wjTj 1.923 (DWBATC) 2.108 (DBWMDD) 1.018

142 M. E. Kurz and S. J. Mason

while the maximum time was 1.09 seconds. B_MDD requires 0.01 seconds in the
worst case to produce a schedule for a given problem instance and produces the best
overall schedule for 25.9% of the problem instances, tying BATC in some cases.

Both competing heuristics are, on average, faster than BIA’s 0.46 seconds of
required computation time. BIA’s minimum and maximum solution times were 0.01
seconds and 3.25 seconds, respectively. The average performance ratio values for the
three competing heuristics are as follows: PR(BATC)¼ 1.032, PR(B_MDD)¼ 1.133,
and PR(BIA)¼ 3.342 (table 3). These results are not surprising, given that the
competing heuristics were developed specifically for this class of single machine
batch scheduling problem.

6.3.2 1jp� batch j
P

wjTj results. Although BIA’s performance improves consider-
ably when non-unit job weights are introduced, it only outperforms WBATC and
BWMDD in 23.5% of the static TWT problem instances. WBATC (BWMDD)
produces the best overall schedule in 34.1% (42.7%) of the problem instances, with
some ties. WBATC requires only 0.38 seconds on average (minimum of 0.08 seconds,
maximum of 1.13 seconds) to produce its best schedule, while BIA requires an
average of 0.79 seconds per problem instance (minimum of 0.04 seconds, maximum
of 3.67 seconds). Comparable to B_MDD, BWMDD requires less than 0.01 seconds
in the worst case to produce a schedule.

The average performance ratio values for the three competing heuristics are
as follows: PR(WBATC)¼ 1.452, PR(BWMDD)¼ 1.517, and PR(BIA)¼ 1.488
(table 3). Under the existence of a wide job due date range (R¼ 2.5) and tightened
job due dates (T¼ 0.6), the worst BIA performance of PR(BIA)¼ 1.619 is realized.
When R¼ 0.5, BIA produces schedules with an average PR(BIA) value of 1.467 for
T¼ 0.3 and 1.560 when T¼ 0.6. While the introduction of non-unit job weights
improved the overall performance of BIA relative to the competing heuristics, BIA
still requires two times as much computation time to produce its results, results that
are 3% worse on average in terms of TWT for static 1jp� batch j

P
wjTj problem

instances.

6.3.3 1jrj, p� batch j
P

Tj results. Experimental results suggest that BIA is very
effective at producing low total tardiness schedules when non-zero job ready times
are present. BIA outperforms both DBATC and DB_MDD in 76.6% of the 5 760
dynamic total tardiness problem instances. Comparable to the solution time required
by the other BATC variants, DBATC required 0.37 seconds per problem instance on
average to produce a schedule, with the minimum (maximum) DBATC solution time
being 0.08 (1.14) seconds. For this dynamic, unit job weight case, BIA required
0.53 seconds on average to generate a schedule, with a minimum (maximum) time
of 0.01 (3.49) seconds. As before, DB_MDD requires a negligible amount of
computational time.

The average performance ratio values for the three competing heuristics are
as follows: PR(DBATC)¼ 1.891, PR(DB_MDD)¼ 2.245, and PR(BIA)¼ 1.042 and
(table 3). Figure 2 illustrates the relative performance of BIA, DB_MDD, and
DBATC when �¼ 0.5, which is representative of BIA’s overall performance for this
problem class. The results in figure 2 are aggregated over all levels of jobs per family
and batch size in order to promote visual clarity of the results presentation.

Minimizing total weighted tardiness on a batch-processing machine 143

BIA performs poorest when R¼ 0.5, albeit while outperforming the competing
heuristics. As the due date range increases to R¼ 2.5, the performance of BIA
improved by 10% at the same time when the performance of both DBATC and
DB_MDD degrade substantially.

6.3.4 1jrj, p� batch j
P

wjTj results. Even though an exhaustive 100 point grid
search was conducted for DWBATC, the variant of BATC that accommodates non-
zero job ready times and non-unit job weights, BIA produces schedules with lower
TWT in 83.5% of the 1jrj, p� batch j

P
wjTj problem instances investigated for both

DWBATC and DBWMDD. Figure 3 summarizes the results of these experiments,
providing the average PR(h) aggregated over both the number of jobs per family (ni)
and ready-time factor �. On average, PR(BIA)5PR(DWBATC) and
PR(BIA)5PR(DBWMDD)and for all cases. The average performance ratio values
for the three competing heuristics are as follows: PR(DWBATC)¼ 1.923,
PR(DBWMDD)¼ 2.108, and PR(BIA)¼ 1.018 (table 3).

In the figure 3 problem instances with 50 jobs, there is a noticeable degradation in
the performance of BIA’s competitors. By splitting jobs into full batches of 4, 6, or 8,
as required in the BATC-based algorithms, we see different numbers of jobs in
partial batches, summarized in table 4. Those jobs in partial batches get placed into
the partial batches based entirely on their ready times, but by the time they get
processed, their ready times are essentially irrelevant, because the completion times
of the previous batches are much larger. The impact of this is greatest for the 50 job
case because 2 jobs per family get this problem, no matter the maximum batch size.
In the 30, 40 and 60 job cases, there are fewer cases where the batches are not all full.

1.115 1.117 1.001 1.026

2.400

1.364

3.384

1.777

3.225

1.660

4.004

2.041

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

0.3 0.6 0.3 0.6
0.5 2.5

Results aggregated over all jobs per
family and batch sizes.

P
er

fo
rm

an
ce

 r
at

io

Avg PR(BIA) Avg PR(DBATC) Avg PR(DB_MDD)

R={0.5,2.5} T={0.3,0.6}

Figure 2. Average PR(h) as a function of R and T when �¼0.5

144 M. E. Kurz and S. J. Mason

Again comparable to its previous computation performance, the BATC variant
DWBATC required 0.38 seconds on average to compute a given job schedule, with a
minimum computation time of 0.08 seconds and a maximum time of 1.15 seconds.
BIA requires approximately twice as long to produce its schedules: 0.73 seconds on
average, with a minimum time of 0.02 and a maximum time of 4.1 seconds. Finally,
DBWMDD’s required computation time was again negligible. Therefore, experi-
mental results suggest the computational price paid for using the BIA heuristic is
minimal compared to the significant TWT savings it produces.

7. Conclusions and future research

This paper has presented adaptations of BATC (Mehta and Uzsoy 1998)
and WMDD (Kanet and Li 2004) for problems leading to the total weighted
tardiness problem with non-zero job ready times, as well as a Batch Improvement

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

30 40 50 60
Jobs per family={30,40,50,60} alpha={0.5,1.0,1.5} Results aggregated over all R, T, and batch sizes

P
er

fo
rm

an
ce

 r
at

io

Avg PR(BIA) Avg PR(DWBATC) Avg PR(DBWMDD)

Figure 3. Average PR(h) as a function of nj and �

Table 4. Number of jobs in partial batches as a function of number of jobs per family and
maximum batch size.

nj B¼ 4 B¼ 6 B¼ 8

30 2 0 2
40 0 4 0
50 2 2 2
60 0 0 4

Minimizing total weighted tardiness on a batch-processing machine 145

Algorithm (BIA). Through extensive computational experiments, BIA is shown to be
well equipped to find low total weighted tardiness batch schedules, though the BATC
and WMDD variants can occasionally find good solutions as well. The performance
of BIA improves as the batch-scheduling problem moves from the initial conditions
for which BATC was developed to address; namely, the introduction of ready times
and weights for jobs favors the use of BIA over the other two competitors. In 83.5%
of the problem instances with job weights and ready times, BIA finds lower TWT
schedules.

BIA was developed to specifically allow the formation of partial batches in
positions other-than-in the last position of the schedule, and this design feature is
shown to be useful and effective. Due to the success in using BIA for the single batch-
processing machine problem, we will adapt BIA for use in identical and non-identical
parallel batch-processing machine environments where again jobs belong to
incompatible families, comparing especially to the approach in Mönch et al. (2005).
We hope to build upon the BIA’s success so that effective, useful schedules can be
generated quickly for this even more challenging and practical machine environment.

Appendix

Table 5 contains nine jobs belonging to two families, with weights, ready times, due
dates and processing times as shown. Jobs 1–5 belong to family 1 and jobs 6–9
belong to family 2. The data has already been sorted by non-decreasing ready times
followed by non-decreasing weighted due dates and broken into batches based on the
family. If B¼ 3, K¼ 7 initial batches are formed. The ready times, starting times and
completion times of each batch have been calculated, as well as the tardiness and
weighted tardiness of each job. The total weighted tardiness is shown in the bottom
of the table. A naı̈ve lower bound on the total weighted tardiness can be found
by calculating the sum of the weighted minimum tardiness for each job,P
8ij wij maxðrij þ pj � dij, 0Þ. In this case, the value is 74.

We begin with k¼K� 2¼ 5.

k¼ 5: The conditions in steps 1.1 to 1.4 do not apply, so we go to Step 2.
Our goal is to find jobs in B6 or B7 that are ready no later than 95.

Table 5. Initial Schedule.

Job wij rij dij dij/wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 49 67 71 0 0
7 5 64 70 14 20 2 3 64 71 91 21 105
2 4 64 74 18.5 4 1 4 69 91 95 21 84
3 7 68 98 14 4 1 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
8 1 70 86 86 20 2 5 70 95 115 29 29
5 7 71 90 12.86 4 1 6 71 115 119 29 203
9 3 71 95 31.67 20 2 7 71 119 139 44 132

571

146 M. E. Kurz and S. J. Mason

B5 contains jobs from family 2, so l¼ 2. In step 3, we form E with jobs

in family 2, ready by 95 and in B6 or B7. The only job that satisfies

these conditions is job 9 in B7, so E¼ {9}. In step 4, we add job 9 to

B5, so B5¼ {8, 9}, E¼Ø, B7¼Ø and f¼ 7. We recurse to BIA(7).
k¼ 7: In step 1, we update the batch ready, start and completion times, as

well as the job completion, tardiness and weighted tardiness values.

In step 1.3, we discover that we are at the last batch and it is empty.

Therefore, we delete it and return to step 4 with k¼ 5. The resulting

schedule is shown in table 6.
k¼ 5 con’t: Step 4 is complete as E¼Ø Step 5 calls BIA(4).

k¼ 4: There is no need to update the schedule at this point. The condition in

step 1.2 holds since B4 is full, so we call BIA(3)
k¼ 3: There is no need to update the schedule at this point. The conditions

in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set

l¼ 2. Step 3 sets E¼ {8, 9}. In step 4, we add jobs from E to B3 as long

as E has jobs and B3 has room, starting with the job with the largest

weighted tardiness. Job 9 has the higher weighted tardiness, so

B3¼ {7, 9}, E¼ {8}, B5¼ {8} and f¼ 5. Fill the open space in B5 by

calling BIA(5).
k¼ 5: In step 1, update the schedule times. Notice that several batch ready

times have changed, which could have impacted the completion times

of several batches in a different problem. In step 1.4, we discover that

we are at the last batch and it is not empty. Therefore, we return to

step 4 with k¼ 3. The resulting schedule is shown in table 7.
k¼ 3: The result of step 5 is B3¼ {7, 8, 9}, E¼Ø, B5¼Ø and f¼ 5. Call

BIA(5).
k¼ 5: In step 1, update the schedule times. The resulting schedule is shown

in table 8. Notice that B5 is empty but is still shown in the schedule.

The conditions in steps 1.1 to 1.4 do not apply, so we go to Step 2.

We cannot go to step 2.1 because B5¼Ø. Therefore, we begin looking

for a job that can ‘‘fit’’ in the space formerly occupied by the jobs

in B5. If we find one, we know that the jobs in batches after B5 will not

be delayed. If there are none, we simply move all the batches up,

Table 6. After job 9 moved to batch 5.

Job wij rij dij dij/wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 49 67 71 0 0
7 5 64 70 14 20 2 3 64 71 91 21 105
2 4 64 74 18.5 4 1 4 69 91 95 21 84
3 7 68 98 14 4 1 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
8 1 70 86 86 20 2 5 71 95 115 29 29
9 3 71 95 31.67 20 2 71 95 115 20 60
5 7 71 90 12.86 4 1 6 71 115 119 29 203

499

Minimizing total weighted tardiness on a batch-processing machine 147

as long as the batch ready times allow. In step 2.2, we form E as the

set of jobs that are ready before 95, in a batch after B5 and with

processing time less than 115–95¼ 20. E¼ {5}. We go to step 2.2.2

which instructs us to add the job with the largest weighted tardiness in

E to B5. The result is B5¼ {5}, E¼Ø, B6¼Ø and f¼ 6. Call BIA(6).

k¼ 6: In step 1, update the schedule times. In step 1.3, we discover that we

are at the last batch and it is empty. Therefore, we delete it by setting

K¼ 5 and return to step 2.2.2 with k¼ 5. The resulting schedule is

shown in table 9.
k¼ 5: In step 2.2.2, we simply continue on to step 3. Step 3 finds E¼Ø, so

skip step 4. Step 5 calls BIA(4).
k¼ 4: There is no need to update the schedule at this point. The condition

in step 1.2 applies, so call BIA(3).
k¼ 3: There is no need to update the schedule at this point. The conditions

in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set

l¼ 2. Step 3 finds E¼Ø so skip step 4. Step 5 calls BIA(2).

Table 8. After job 8 moved to batch 3.

Job wij rij dij dij/wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 49 67 71 0 0
7 5 64 70 14 20 2 3 71 71 91 21 105
9 3 71 95 31.67 20 2 71 71 91 0 0
8 1 70 86 86 20 2 71 71 91 5 5
2 4 64 74 18.5 4 1 4 69 91 95 21 84
3 7 68 98 14 4 1 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
(empty) 5
5 7 71 90 12.86 4 1 6 71 115 119 29 203

415

Table 7. After job 9 moved to batch 3.

Job wij rij dij dij/wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 49 67 71 0 0
7 5 64 70 14 20 2 3 71 71 91 21 105
9 3 71 95 31.67 20 2 71 71 91 0 0
2 4 64 74 18.5 4 1 4 69 91 95 21 84
3 7 68 98 14 4 1 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
8 1 70 86 86 20 2 5 70 95 115 29 29
5 7 71 90 12.86 4 1 6 71 115 119 29 203

439

148 M. E. Kurz and S. J. Mason

k¼ 2: There is no need to update the schedule at this point. The conditions

in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set

l¼ 1. Step 3 sets E¼ {2}. In step 4, we find B2¼ {1, 2}, E¼Ø,

B4¼ {3, 4} and f¼ 4. Call BIA(4).
k¼ 4: In step 1, update the schedule times. The resulting schedule is shown

in table 10.

The conditions in steps 1.1 to 1.4 do not apply, so we go to Step 2.

In step 2.1, we set l¼ 1. Step 3 sets E¼ {5} The result of step 4 is

B4¼ {3, 4, 5}, E¼Ø, B5¼Ø and f¼ 5. Call BIA(5).

k¼ 5: In step 1, update the schedule times. In step 1.3, we discover that we

are at the last batch and it is empty, so we set K¼ 4. We return to step

4 with k¼ 4. The resulting schedule is shown in table 11.
k¼ 4: In step 4, we see E¼Ø, so step 5 calls BIA(3).
k¼ 3: There is no need to update the schedule at this point. The conditions

in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set

l¼ 2. Step 3 finds E¼Ø so skip step 4. Step 5 calls BIA(2).

Table 10. After job 2 moved to batch 2.

Job wij rij dij dij wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 64 67 71 0 0
2 4 64 74 18.5 4 1 64 67 71 0 0
7 5 64 70 14 20 2 3 71 71 91 21 105
9 3 71 95 31.67 20 2 71 71 91 0 0
8 1 70 86 86 20 2 71 71 91 5 5
3 7 68 98 14 4 1 4 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
5 7 71 90 12.86 4 1 5 71 95 99 9 63

191

Table 9. After job 5 moved to batch 5.

Job wij rij dij dij wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 49 67 71 0 0
7 5 64 70 14 20 2 3 71 71 91 21 105
9 3 71 95 31.67 20 2 71 71 91 0 0
8 1 70 86 86 20 2 71 71 91 5 5
2 4 64 74 18.5 4 1 4 69 91 95 21 84
3 7 68 98 14 4 1 69 91 95 0 0
4 2 69 86 43 4 1 69 91 95 9 18
5 7 71 90 12.86 4 1 5 71 95 99 9 63

275

Minimizing total weighted tardiness on a batch-processing machine 149

k¼ 2: There is no need to update the schedule at this point. The conditions
in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set
l¼ 1. Step 3 finds E¼Ø so skip step 4. Step 5 calls BIA(1).

k¼ 1: There is no need to update the schedule at this point. The conditions
in steps 1.1 to 1.4 do not apply, so we go to Step 2. In step 2.1, we set
l¼ 2. Step 3 finds E¼Ø so skip step 4. Step 5 calls BIA(0).

k¼ 0: Stop. BIA returns a total weighted tardiness value of 163.

In the application of BIA to the example problem, the total weighted tardiness was
reduced from 571 to 163, which is much closer to the naı̈ve lower bound of 74.
In fact, BIA’s solution is 21.6% above the true optimal solution of 134 as determined
by a mixed-integer programming formulation of the single machine, batch
scheduling problem with ready times.

References

Baker, K.R. and Bertrand, J.W.M., A dynamic priority rule for scheduling against due-dates.
J. Oper. Manag., 1982, 3, 37–42.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T. and
Van de Velde, S., Scheduling a batching machine. J. Sched., 1998, 1, 31–54.

Chandru, V., Lee, C.-Y. and Uzsoy, R., Minimizing total completion time on batch processing
machines. Int. J. Prod. Res., 1993, 31(9), 2097–2121.

Coffman, E., Yannakakis, M., Magazine, M. and Santos, C., Batch sizing and job sequencing
on a single machine. Annals of Oper. Res., 1990, 26, 135–147.

Hochbaum, D. and Landy, D., Scheduling semiconductor burn-in operations to minimize
total flowtime. Oper. Res., 1997, 45(6), 874–885.

Kanet, J.J. and Li, X., A weighted modified due date rule for sequencing to minimize weighted
tardiness. J. Sched., 2004, 7, 263–278.

Kurz, M.E. (2003). On the structure of optimal schedules for minimizing total weighted
tardiness on parallel, batch-processing machines. Industrial Engineering Research
Conference Proceedings 2003, Portland OR (CD-ROM).

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, AHG., Recent developments in deterministic
sequencing and scheduling: A survey. In Deterministic and Stochastic Scheduling, edited
by M.A.H. Dempster, J.K. Lenstra and AHG Rinnooy Kan, pp. 35–74, 1982 (D. Reidel
Publishing Co.: The Netherlands).

Table 11. After job 5 moved to batch 4.

Job wij rij dij dij/wij Pj Family Batch k Rk Sk Ck Tij wijTij

6 1 47 78 78 20 2 1 47 47 67 0 0
1 6 49 122 20.33 4 1 2 64 67 71 0 0
2 4 64 74 18.5 4 1 64 67 71 0 0
7 5 64 70 14 20 2 3 71 71 91 21 105
9 3 71 95 31.67 20 2 71 71 91 0 0
8 1 70 86 86 20 2 71 71 91 5 5
3 7 68 98 14 4 1 4 71 91 95 0 0
4 2 69 86 43 4 1 71 91 95 9 18
5 7 71 90 12.86 4 1 71 91 95 5 35

163

150 M. E. Kurz and S. J. Mason

Lee, C.Y. and Uzsoy, R., Minimizing makespan on a single batch processing machine with
dynamic job arrivals. Int. J. Prod. Res., 1999, 37, 219–236.

Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P., Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1977, 1, 343–362.

Mason, S.J., Fowler, J.W. and Carlyle, W.M., A modified shifting bottleneck heuristic for
minimizing total weighted tardiness in complex job shops. J. Sched., 2002, 5(3),
247–262.

Mehta, S.V. and Uzsoy, R., Minimizing total tardiness on a batch processing machine with
incompatible job families. IIE Trans., 1998, 30, 165–178.

Mönch, L., Balasubramanian, H., Fowler, J.W. and Pfund, M.E., Heuristic scheduling of jobs
on parallel batch machines with incompatible job families and unequal ready times.
Computers and Oper. Res., 2005, 32, 2731–2750.

Perez, I.C., Fowler, J.W. and Carlyle, W.M., Minimizing total weighted tardiness on a single
batch process with incompatible job families. Computers and Oper. Res., 2005, 32,
327–341.

Potts, C., Strusevich, V. and Tautenhahn, T., Scheduling batches with simultaneous job
processing for two-machine shop problems. J. Sched., 2001, 4(1), 25–51.

Sung, C. and Choung, Y., Minimizing makespan on a single burn-in oven in semiconductor
manufacturing. Eur. J. Oper. Res., 2000, 120, 559–574.

Uzsoy, R., Scheduling batch processing machines with incompatible job families. Int. J. Prod.
Res., 1995, 33(10), 2685–2708.

Van der Zee, D.-J., van Harten, A. and Schuur, P., On-line scheduling of multi-server batch
operations. IIE Trans., 2001, 33, 569–586.

Vepsalainen, A. and Morton, T.E., Priority rules and lead time estimation for job
shop scheduling with weighted tardiness costs. Manage. Sci., 1987, 33, 1036–1047.

Minimizing total weighted tardiness on a batch-processing machine 151

