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Abstract

This paper proposes a methodology to find weakly Pareto optimal solutions to a symmetric multi-objective traveling
salesman problem using a memetic random-key genetic algorithm that has been augmented by a 2-opt local search.
The methodology uses a ‘‘target-vector approach” in which the evaluation function is a weighted Tchebycheff metric with
an ideal point and the local search is randomly guided by either a weighted sum of the objectives or a weighted Tchebycheff
metric. The memetic algorithm has several advantages including the fact that the random keys representation ensures that
feasible tours are maintained during the application of genetic operators. To illustrate the quality of the methodology,
experiments are conducted using Euclidean TSP examples and a comparison is made to one example found in the
literature.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The Traveling Salesman Problem (TSP) is a widely studied problem in the combinatorial optimization lit-
erature. The goal of the TSP is to find a tour that begins in a specific city, visits each of the remaining cities
exactly once, and returns to the initial city such that some objective function is optimized, typically involving
minimizing a function such as total distance traveled, total time, or total cost. In the multi-objective TSP (mo-
TSP), simultaneous optimization of distances, costs, times, or other relevant objectives is required. In this
research, the symmetric case is considered where the distance, time, or cost between cities is known and
symmetric.

Determining whether a solution is inefficient is a non-deterministic polynomial-time complete (NPC) task
for many multi-objective combinatorial optimization problems. Single-objective shortest path problem and
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minimum spanning tree problem are both polynomially solvable problems. However, multi-criteria versions of
these problems belong to the class of NPC problems even for two objectives (Hansen, 2000). TSP is NP-hard
even with single objective. The multi-criteria version has the difficulty of the TSP itself and the difficulty of
multiple objectives (Ehrgott, 2000). Therefore, for mo-TSP, heuristic methods which provide sub-optimal
solutions are widely used. The literature contains many such approaches for addressing the mo-TSP such
as tabu search (Hansen, 2000) and genetic algorithms (GA) (Jaszkiewicz, 2002). It is noted, particularly for
larger TSP problems, that combining approaches can enhance the ability to find good solutions. Methods that
combine domain-specific local search and evolutionary algorithms have received special attention and are
called memetic algorithms (Merz & Freisleben, 2001). In this research, we combine a 2-opt local search (2-
opt) with a GA having been inspired by Jaszkiewicz (2002). In the research, GA is allowed to work in the
search space of local minima (with respect to the local search implemented) and diversity is preserved via dif-
ferent genetic operators to avoid trapping.

To be more precise, the proposed methodology combines a random-keys genetic algorithm (RKGA) with
2-opt local search to find good solutions to the symmetric mo-TSP. RKGA was introduced by Bean (1994)
and was found particularly useful in manufacturing cell formation problems (Goncalves & Resende, 2004)
and sequencing and scheduling problems (Kurz & Askin, 2004; Norman & Bean, 2000). This, along with Sny-
der and Daskin’s (2006) application to the generalized TSP problem, provided initial motivation for using an
RKGA in the mo-TSP setting. Preliminary results were quite promising as reported in Samanlioglu, Kurz,
Ferrell Jr., and Tangudu (2007) for the symmetric TSP and Samanlioglu, Kurz, and Ferrell Jr. (2006) for
the mo-TSP. In addition to a much more extensive look at the problem, this preliminary work has led to a
number of fundamental modifications in the methodology including: a set of swap mutations for the inversion,
and a different 2-opt implementation – a randomly selected guide for the 2-opt in which a weighted sums or a
weighted Tchebycheff metric is applied with equal likelihood. Details of these are provided when the mo-TSP
and the methodology are discussed.

In summary, the proposed methodology utilizes a novel memetic algorithm to address the mo-TSP prob-
lem. To effectively explain this methodology, we now address the basic idea of the RKGA and identify the
unique aspects that make it particularly amenable to the mo-TSP. We then provide a brief discussion of
the critical ideas related to the mo-TSP that directly relate to the proposed methodology that is presented
in Section 4. Finally, experimental results are shown and comparisons made with the literature.

2. Random-key genetic algorithm

GAs were introduced by Holland in the 1970s (Holland, 1975). These algorithms mimic the concepts of
biological evolution to develop solutions to complex real world problems. GAs have been used in many appli-
cations of TSP and its extensions throughout the literature (Cheng & Gen, 1994; Cheng, Gen, & Sasaki, 1995;
Kubota, Fukuda, & Shimojima, 1996).

The main idea behind GAs is to start with randomly generated solutions and implement the ‘‘survival of the
fittest” strategy in order to evolve to increasing better solutions through generations. A typical GA process
consists of initial population generation, fitness evaluation, chromosome selection, applying genetic operators
such as mutation, immigration, inversion, and crossover for reproduction, and termination. A particularly
nice introduction to GAs is given in Goldberg’s book (Goldberg, 1989).

An important issue in designing a GA is the chromosomal representation of a solution. Chromosomes are
strings of numbers which represent the solution of the problem or can be decoded to represent the solution.
Sometimes these numbers are 0s and 1s but other possibilities exist like strings of non-negative integers. When
applying GAs to sequencing problems like scheduling and TSP, one of the key genetic operators is crossover.
The simplest form of crossover is to select two chromosomes from the population, randomly select a point to
split each into two pieces, and splice the front end of the first chromosome with the complementary end from
the other and vice versa to form two different chromosomes, each of correct length. To illustrate this in TSP,
assume that we have two chromosomes randomly selected from the population representing two different
tours of a salesman starting at a city and visiting six other cities.

These tours are 1! 2! 3! 4! 5! 6! 7 and 5! 4! 3! 6! 1! 2! 7 as seen in Fig. 1. Assume
that each tour is split at a randomly selected point, for example after the third city visited, and the front end of
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Fig. 1. Example of a simple crossover that creates infeasible tours.
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the first tour is spliced with the complementary end of the second tour, and vice versa. The resulting tours are
1! 2! 3! 6! 1! 2! 7 and 5! 4! 3! 4! 5! 6! 7. These tours are infeasible since in each tour
some cities are visited twice and others are not visited at all. This is a common occurrence for TSP; however
feasibility can be maintained in a number of ways. Some have proposed ‘‘repair algorithms” to recreate fea-
sible tours; however, repair algorithms can consume a considerable amount of time and can inhibit conver-
gence (Michalewicz, 2000). A better alternative is to use an alternative chromosomal representation like the
one introduced by Bean (1994) in which a random numbers encoding structure is used, resulting in the so-
called Random Keys GA (RKGA). The structure proposed by Norman and Bean (1999) for a multiple
machine scheduling problem was to assign a real number to each job. The part of the number to the left of
the decimal was used to assign the machine and the part to the right of the decimal was used to assign the
job sequence.

In this research, the initial population is created by randomly generating N (population size) chromosomes,
each consisting of T genes that correspond to T cities in the problem using a uniform distribution between A
and B (in our experiments A = 1, B = 3000). The first random number created for a chromosome is for the
first city, second number is for the second city... and nth number is for the nth city. These random numbers
are then used as ‘‘sort keys” to decode the solution. To decode a chromosome, cities are sorted in the ascend-
ing order of their corresponding keys to indicate the travel order of a salesman. For example, for a seven-city
(T = 7) problem, the random keys encoding of a chromosome C1 = {2, 12, 15, 29, 30, 45, 52} decodes as the
tour 1! 2! 3! 4! 5! 6! 7 and another chromosome C2 = {24, 32, 13, 10, 4, 22, 48} decodes as the
tour 5! 4! 3! 6! 1! 2! 7. Note that, these tours are the same ones shown in Fig. 1. All genetic oper-
ators are then executed on the random keys encoding, not on the decoded tour, so that all resulting chromo-
somes decode to produce feasible solutions. For example, if we apply the same crossover operation
2 12 15 30 45 52 24 32 13 10 4 22 48

2 12 29 30 45 52 24 32 10 4 22 48

2 12 13 29 30 45 5224 3215 10 4 22 48
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Fig. 2. Example of a simple crossover in RKGA.
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implemented in Fig. 1 to C1 and C2, since crossover is implemented to random keys, not the decoded tours, the
resulting tours will be feasible as seen in Fig. 2. Here, RKGA eliminates the infeasibilities in the algorithm
without the usage of ‘‘repair algorithms.”

3. Multi-objective TSP

A multi-objective program (MOP)
min f ðxÞ ¼ ff1ðxÞ; f2ðxÞ; :::; fkðxÞg
st x 2 X

ð1Þ
is assumed to have k (k P 2) competing objective functions (x 2 Rn; f i : Rn ! R) that are to be minimized
simultaneously.

Definition: A decision vector x� 2 X is efficient (Pareto optimal) for MOP if there does not exist a
x 2 X ; x 6¼ x� such that fiðxÞ 6 fiðx�Þ for i ¼ 1; :::; k with strict inequality holding for at least one index i.

(x� 2 X is efficient, f ðx�Þ is non-dominated.)
Definition: A decision vector x� 2 X is weakly efficient (weakly Pareto optimal) for MOP if there does not

exist a x 2 X ; x 6¼ x� such that fiðxÞ < fiðx�Þ for i ¼ 1; :::; k: (x� 2 X is weakly efficient, f ðx�Þ is weakly non-
dominated.)

In practical mo-TSP applications, there might be several competing objective functions that correspond to
cost factors related to distance, expenses, travel time, degree of risk, energy consumption, and other relevant
considerations for the tour. The dimensionality of the objective space along with other factors such as
comparability of solutions and hybridization with local search greatly affects the selection of evolutionary
multi-objective optimization approach that will be implemented to find (weakly) Pareto optimal solutions
to mo-TSPs. Existing evolutionary multi-objective optimization approaches can be generally classified as
Pareto-based techniques and non-Pareto based techniques.

In non-Pareto based techniques like VEGA (Schaffer, 1984) and the Target Vector Approach (Coello
Coello, 2001), the selection does not rely directly on the concept of Pareto dominance and Pareto ranking.
In Pareto-based techniques such as NSGA II (Deb, Pratap, Agarwal, & Meyarivan, 2002) and SPEA II
(Zitzler, Laumanns, & Thiele, 2001), the selection depends on Pareto dominance and ranking induced by
dominance relation. This idea was first introduced by Goldberg (1989). A basic example to these
techniques is the multi-objective GA of Fonseca and Fleming (1993) where the rank of a given solution
is equal to the number of solutions that dominate it. The main advantages of Pareto ranking based
methods are to be able to avoid the necessity of normalizing objective functions, setting reference points
and specifying weighting coefficients (wi) which represent relative importance given to each objective func-
tion. However, there are also disadvantages of Pareto based techniques as mentioned in Jaszkiewicz’s
(2002) and Knowles and Corne’s (2004) research. One disadvantage is that Pareto ranking is not well sui-
ted for hybridization with local search since many local moves may not influence the rank of a solution.
In some cases, change of a rank of a solution may require significant changes in the objective function
values, and this might not be possible with local moves. Also, for solutions which are already ranked
1 (efficient solutions), local improvement is not possible (Jaszkiewicz, 2002). Another disadvantage is
about the comparability of solutions. In 2004, Knowles and Corne (2004) suggested that in a MOP if
there are only two or three objective functions, the dominance-ranking-based methods may be the most
appropriate; however, if the number of objectives is four or more, Pareto selection may cause problems
since many solutions will be incomparable.

In this research RKGA is hybridized with local search (2-opt). Moreover, presented memetic algorithm is
intended for up to five or more objective-TSPs. Based on these facts, this research uses a non-Pareto based
approach that does not directly rely on Pareto dominance or Pareto ranking called – Target Vector Approach.

In Target Vector Approach, each objective vector is assigned a goal or target vector. The evolutionary algo-
rithm seeks to minimize the ‘‘distance” between the generated solution and the target vector with distance
defined by one of several different metrics. In this methodology, as the evaluation function of RKGA, a
weighted Tchebycheff metric is used with the ideal point as the reference point or target vector.
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If z00i is the reference point and we use the ideal point z00i ¼ minx2X fiðxÞ as the reference point, the general
weighted Lp-metric (1 6 p <1) is defined as
min
Xk

i¼1

wijfiðxÞ � z00i j
p

 !1=p

st x 2 X :

ð2Þ
We assume that wi P 0 for all i ¼ 1; :::; k and
Pk

i¼1wi ¼ 1, where the wi’s are weighting coefficients provided
by the decision maker. If p =1, problem (2) reduces to a ‘‘weighted Tchebycheff program” (Bowman, 1976)
min max
i¼1;:::;k

½wijfiðxÞ � z00i j�

st x 2 X :
ð3Þ
If the reference point is the global optimal solution for fi(x) then the absolute value signs in problem (3) can
be removed (Miettinen, 1999) yielding
min max
i¼1;:::;k

fwiðfiðxÞ � z00i Þg

st x 2 X :
ð4Þ
The solution of problem (2) is non-dominated if the solution is unique or if all the weighting coefficients are
positive (Yu, 1973). Note that problem (2) coincides with the ‘‘weighted sums” or ‘‘weighting” problem if p

= 1. Convexity of the feasible objective space is needed in order to find all non-dominated solutions using
problem (2). If the feasible objective space is not convex, with (2) only supported efficient solutions which
lie in the convex hull of the Pareto front can be found, however non-supported efficient solutions which lie
in the non-convex portions of the Pareto front can not be found.

The solution of problem (3) is guaranteed weakly non-dominated for positive weights and at least one
non-dominated solution is also guaranteed. If the solution is unique, then it is non-dominated; however, if
the solution is not unique, then it might be weakly non-dominated (Wierzbicki, 1986). The main advantage
of implementing weighted Tchebycheff function (3) or (4) over (2) or specifically ‘‘weighted sums” function
is to be able to generate non-supported efficient solutions as well as supported efficient solutions in the
mo-TSP since the feasible objective space is not necessarily convex.

The weighted Tchebycheff function has been used as an evaluation function for mo-TSP in Hansen (2000)
and it has been used as part of a quality measure in Jaszkiewicz (2002). Hansen (2000) combined tabu search
and local search to solve mo-TSPs and claimed that better results are obtained when using weighted Tcheby-
cheff functions if the local search is guided by a weighted sums function rather than a weighted Tchebycheff
metric. Jaszkiewicz (2002) presented a multi-objective genetic local search algorithm for mo-TSP combining
distance preserving crossover with local search. He referred to Hansen’s results and implemented a weighted
sums evaluation function while guiding the local search also with a weighting problem.

In this research, we also use a weighted Tchebycheff function as the evaluation function in RKGA, how-
ever, the way 2-opt is implemented is different from existing research. Here, 2-opt search is guided by random
selection of weighted sums or a weighted Tchebycheff function with equal chances of implementation. Ran-
dom selection occurs every time 2-opt is implemented. If weighted Tchebycheff function is selected as a result
of random selection, 2-opt uses weighted Tchebycheff function for evaluation, so 2-opt moves are acceptable
iff they provide a tour with a better weighted Tchebycheff function. On the other hand, if weighted sums func-
tion is selected as a result of the random selection, 2-opt uses weighted sums function for evaluation, so 2-opt
moves is acceptable iff they provide a tour with a better weighted sums function. The reason for this approach
is that we speculate each function will guide the search differently. The weighted Tchebycheff function will
keep the search generally aligned with the RKGA’s weighted Tchebycheff evaluation function and increase
the chance of finding non-supported efficient solutions. Weighted sums function, on the other hand, will be
easier to optimize and will have higher chance for finding new potentially efficient solutions as a result of
mo-TSPs relatively smooth non-dominated set as mentioned in Jaszkiewicz (2002). Note, however, that we
do not claim this approach will work the best for other multi-objective combinatorial optimization problems.
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However, in general, we speculate that if we have no information or partial information about the global
shape of the non-dominated set of a MOP, the presented random selection method might be a good alternative
to find part of the non-dominated set.

4. Methodology

The genetic operators used in this research are elitist reproduction, immigration, parameterized uniform
crossover with tournament selection and swap mutation, similar to those in Bean’s (1994), Norman and
Bean’s (1999), Ryan, Azad, and Ryan’s (2004) and Samanlioglu, Kurz, Ferrell Jr., and Tangudu’s
(2007) research. A set of swap mutations is used in this research versus the inversion operator used in
our previous research (Samanlioglu, Kurz, & Ferrell Jr., 2006; Samanlioglu et al., 2007) since this provides
better exploration of the solution space and diversification in the population. Inversion is simply cutting
out a sequence and replacing in reverse order so only two edges are replaced. In the classic swap mutation
operation (Ryan, Azad, & Ryan, 2004), two cities are selected at random along the chromosome and their
keys are swapped. In our implementation, s cities are selected at random along the chromosome, all the
possible permutations of the keys of these s cities are created (implementing 2-opt after each permutation
separately), and the best found chromosome is kept. We repeat this procedure k times for the same
chromosome.

Since RKGA is an iterative procedure, a stopping criterion is utilized: a specified number of generations
(G). The basic steps are:

1. Randomly generate the initial population of N chromosomes representing N feasible tours and apply 2-opt
to all chromosomes.

2. Perform an elitist reproduction strategy whereby e% of the best chromosomes is copied to the next gener-
ation. The number of tours in the population of the next generation is now e% * N.

3. Take duplicates of the tours in step 2 and perform a set of swap mutations to s genes for k times (applying
2-opt after each permutation of these s genes separately). Add these to the population of the next genera-
tion which now has 2e% * N tours.

4. Perform parameterized uniform crossover with tournament selection (crossover probability c%) and 2-opt
to p% of the previous population. Copy these chromosomes to the next generation which now has
(2e% + p%)*N tours.

In parameterized uniform crossover with tournament selection and 2-opt, two chromosomes are randomly
selected from the population. For each gene corresponding to a city for the TSP problem, a random number
(between 0 and 1) is generated. If the value is less than or equal to the crossover probability (c%), the gene
from the first chromosome is copied to the first new chromosome and the gene from the second chromosome
is copied to the second new chromosome. If the random number is greater than the crossover probability, the
genes are swapped. 2-opt is applied to both new chromosomes and as a result of the tournament selection, the
one with the better evaluation function is included in the population of the next generation. The random keys
representation ensures that feasible tours are constructed during the application of particularly this genetic
operator, so no ‘‘repair” algorithm is needed to move back to the search space.

5. Use immigration to generate the remaining i% of the population associated with the next generation. Immi-
gration is used to ensure diversity. Here, new chromosomes are randomly generated, implementing the
same technique while initializing the population. Apply 2-opt to these chromosome(s) and copy them to
the population of the next generation. The next generation is now complete with N tours since
2e% + p% + i% = 100%.

6. If the stopping criterion is satisfied, go to step 7, otherwise, go to step 2.
7. Present the best tour and terminate the algorithm.

Note that, 2-opt is applied to all chromosomes at the initialization process and also after implementation of
each genetic operator.
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5. Computational experiments

The algorithm is implemented in C++ and tested using Condor High Throughput Computing Software
(Condor), a distributed system that delivers the ideas of grid computing by harnessing the power of any avail-
able computer throughout the campus, and matching these resources to jobs through a flexible mechanism. It
enables scientists to easily perform large-scale computations, however for CPU time comparisons it is not suit-
able since each experiment is done in a different available computer that might have different specifications
depending on the computer availability. Based on this limitation, CPU times of the computational experi-
ments are not presented.

The data for the computational experiments are taken from TSPLIB (Reinelt, 1995) and involve five
problems, each containing 100 cities (kroA100, kroB100, kroC100, kroD100, and kroE100) with Euclidean
distances. We created 2-, 3-, 4-, and 5-objective problems by combining these five problems. For example,
to create a 3-objective problem, we used kroA100, kroB100 and kroC100 (kroABC100) as the first, sec-
ond, and third objectives, respectively. Optimal solutions for each problem (kroA100, kroB100, kroC100,
kroD100, and kroE100) are listed in TSPLIB, so the ideal point was readily available for use in the cre-
ated mo-TSPs.

We have compared our best results with that found in Hansen (2000) for 2-, 3-, and 5-objective problems.
To duplicate the situation in Hansen’s research, the computational experiments all use equal weighting coef-
ficients (wi in problems (2) and (4)). All computational results are obtained with parameters s = 4, k = 10, and
(e%, p%, c%, i%) = (20%, 59%, 70%, 1%). To be able to compare with Hansen’s research, in each experiment,
population size (N) and stopping criterion (G) are adjusted to allow approximately 10,000 evaluations in the
algorithm using the formulae G ¼ 10000�N

3:19N . Here, 10000 � N represents the total number of evaluations reduced
by initial population evaluations. 3.19N represents swap mutation evaluations (20%*(k = 10))*N plus param-
eterized uniform crossover with tournament selection evaluations (59%*(tournament selection = 2)*N plus
immigration evaluations (1%)*N.

In Tables 1 and 2 best results obtained using the proposed methodology are given for 2-, 3-, 4-, and 5-objec-
tive problems along with Hansen’s results. Note that Hansen did not present results for the 4-objective prob-
lems. In Table 2, best results of all 4-objective combinations of these five problems (kroA100, kroB100,
kroC100, kroD100, and kroE100) are presented. For the 2- objective problem (kroAB100) the proposed meth-
odology matched that of Hansen so only one solution is presented in Table 1. The 3- objective problem (kro-
ABC100) and the 5-objective problem (kroABCDE100), however, produced different results from Hansen’s as
reflected in Table 1. As seen in this table, the best results found using the proposed methodology for kro-
ABC100 and kroABCDE100 were superior to those found by Hansen since the evaluation functions (4) were
smaller in value.
Table 1
Best results of Hansen (Hansen, 2000) and the proposed methodology for the 2-objective problem (kroAB100), 3-objective problem
(kroABC100) and the 5-objective problem (kroABCDE100)

Problem

1-Objective
problems

kroAB100 kroABC100 kroABCDE100

Proposed
methodologya

Hansen Proposed
methodology

Hansen Proposed
methodology

Cost in kroA100 21,282 49,771 67,274 67,202 85,412 85,604
Cost in kroB100 22,141 50,652 68,054 68,073 86,254 86,536
Cost in kroC100 20,749 66,751 66,557 85,018 84,795
Cost in kroD100 21,294 85,753 85,734
Cost in kroE100 22,068 86,177 86,499

wi = 1/k (1/2, 1/2) (1/3,1/3,1/3) (1/5,1/5,1/5,1/5,1/5)
Evaluation function

(4)
14,256 15,334 15,311 12,892 12,888

a Same result of kroAB100 was obtained in Hansen’s research (Hansen, 2000).



Table 2
Best results found with the proposed methodology for five 4-objective problems

Cost in Problem

kroABCD100 kroABCE100 kroABDE100 kroACDE100 kroBCDE100

kroA100 78,246 78,407 77,961 77,401
kroB100 78,870 79,240 78,915 78,503
kroC100 77,710 77,637 76,946 77,497
kroD100 78,197 78,090 77,526 77,813
kroE100 79,234 78,782 78,418 78,744

wi = 1/k (1/4, 1/4, 1/4, 1=4)

Evaluation function (4) 14,241 14,292 14,199 14,088 14,187
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Relative excess over the best known solution is calculated as
Table
Averag
(R) for

Proble

kroAB
kroAB
kroAB
kroAB
kroAB
kroAC
kroBC
kroAB
Relative Excess¼Evaluation function of the RKGA tour�Evaluation function of the best known RKGA tour

Evaluation function of the best known RKGA tour
In Table 3, average relative excess (ARE) in percent of 30 replications of the proposed methodology along
with number of replications (R) best solutions are obtained (out of these 30 replications, the ones that have
relative excess = 0) are presented for 2-, 3-, 4-, and 5-objective problems. Here, five different settings are used
(N = 25, 50, 100, 500, 1000) for these experiments. Approximately 10000 evaluations are allowed so for each
population size (N), stopping criterion (G) is calculated based on the formulae given before.

These results indicate that the proposed methodology is able to perform well on average for the tested 2-,
3-, 4-, and 5- objective problems. Average relative excess never exceeded 0.5021% and 0.7230% for the 2-objec-
tive (kroAB100) and 3-objective (kroABC1000) problems, respectively. In both of these problems and in two
of the 4-objective problems (kroABCE100, kroACDE100) best known solutions were found more than once
during the computational experiments. Maximum average relative excess was 0.8892%, and 1.0053%, respec-
tively for the 4- and 5-objective problems. Consistent with intuition, in our experiments, we observed that
maximum average relative excess increased as the number of objectives increased.

Hansen (2000) presented the median of deviation over 30 tabu search repetitions from his best found solu-
tions in percent for 3 mo-TSP problems (kroAB100, kroABC100, and kroABCDE100). He allowed 10,000
neighborhood moves in each repetition. He used several substitute scalarizing functions to guide local search
(2-opt) even though the evaluation function remained as weighted Tchebycheff function, and claimed that bet-
ter results are obtained in that case. We compared our evaluation function results with Hansen’s by guiding 2-
opt with weighted sums (p = 1 in program (2)) and weighted Tchebycheff (p =1 in program (2)) functions.
When two-opt is guided by a weighted Tchebycheff function, a 2-opt move is conducted only if this move is
going to provide a tour with a better weighted Tchebycheff function than the previous tour. On the other
hand, when 2-opt is guided by a weighted sums function, a 2-opt move is acceptable only if this move is going
3
e relative excess (ARE) of 30 replications of the proposed methodology in percent and number of replications best solution is found
five different settings

m N = 25 N = 50 N = 100 N = 500 N = 1000
G = 125 G = 62 G = 31 G = 6 G = 3

ARE R ARE R ARE R ARE R ARE R

100 0.4520 3 0.4003 2 0.3328 6 0.3140 3 0.5021 0
C100 0.7183 1 0.7230 0 0.5851 1 0.5744 0 0.6976 1
CD100 0.6873 0 0.5597 0 0.5242 1 0.5284 0 0.6855 0
CE100 0.7850 1 0.6460 0 0.5337 3 0.6968 0 0.8892 0
DE100 0.7013 1 0.7415 0 0.7471 0 0.6955 0 0.8117 0
DE100 0.7394 1 0.5829 1 0.5294 0 0.5646 0 0.6019 0
DE100 0.7131 0 0.5494 1 0.5806 0 0.6027 0 0.8194 0
CDE100 0.9469 1 1.0027 0 0.9127 0 0.8985 0 1.0053 0



Table 4
Median of deviation over 30 replications of the proposed methodology from Hansen’s (Hansen, 2000) best found solutions in percent and
related Hansen’s results

Problem Hansen’s tabu search Proposed methodology

p =1 in program (2) p = 1 in program (2) p =1 in program (2) p = 1 in program (2)

kroAB100 1.9 0.4 0.4 0.4
kroABC100 2.1 0.6 1.3 0.4
kroABCDE100 2.2 0.6 1.8 0.7
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to produce a tour with a better weighted sums function than the previous tour. Here, the general evaluation
function remains as a weighted Tchebycheff function but just to evaluate the acceptability of 2-opt moves, a
weighted sums function is used. We allowed 10,000 evaluations to be consistent with Hansen’s research and
presented median of deviation over 30 replications of the proposed methodology from Hansen’s best found
solutions in percent in Table 4. Note that CPU times are not presented here because of the limitations due
to grid computing.

As seen in this table, the results obtained using the proposed methodology for kroAB100 and kroABC100
were superior to or at least as good as those found by Hansen for two different strategies of guiding 2-opt: with
weighted sums (p = 1) and with weighted Tchebycheff (p =1) functions. Also, a better result was obtained
with the proposed methodology than Hansen’s for the 5-objective problem (kroABCDE100) when 2-opt
was guided with weighted Tchebycheff (p =1) function. In general, we observed that better or at least as good
results were obtained by guiding 2-opt with a weighted sums function (p = 1) than a weighted Tchebycheff
function (p =1) for the tested problems. This observation was consistent with Hansen’s suggestions.

In all the experiments presented in this research, except the ones shown in Table 4, a different strategy of
guiding 2-opt is implemented. This strategy of 2-opt includes random selection of a weighted sums function or
a weighted Tchebycheff function with equal chances of implementation. Fig. 3 illustrates the average relative
excess of 30 replications of the proposed methodology with three different 2-opt strategies (random selection,
with weighted Tchebycheff (p =1), and with weighted sums (p = 1)) for kroAB100, kroABC100, and kro-
ABCDE100 problems.

As seen in this figure, the random selection strategy of implementing 2-opt produced better or at least as
good results than other strategies for the tested problems. (p =1) strategy produced the worst results for
the tested problems. Average relative excess was equal with random selection and (p = 1) strategies for
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Fig. 3. Average relative excess of 30 replications of the proposed methodology in percent for kroAB100, kroABC100, and kroABCDE100
problems and three different strategies of implementing 2-opt.



448 F. Samanlioglu et al. / Computers & Industrial Engineering 55 (2008) 439–449
kroAB100 and kroABC100. However, for kroABCDE100, guiding with random selection was better than
both (p = 1) and (p =1) strategies. Based on these results, in our research, for all computational experiments
we have used the random selection strategy.

6. Conclusions

In this paper, we have presented a memetic RKGA in order to find (weakly) Pareto optimal solutions to a
mo-TSP. The key contribution in this research is the application of a novel memetic algorithm that includes a
RKGA and local search to the mo-TSP. RKGA is preferred to other GA approaches since the random keys
encoding eliminates the infeasibilities that can occur in other GA techniques during the application of some
genetic operators, so a repair algorithm which might consume time and inhibit convergence is not required to
move back to the search space. Another contribution is the way local search is implemented. Here, the metric
to guide the 2-opt is selected randomly: a weighted sums or a weighted Tchebycheff metric is applied with
equal chances of implementation, even though the general evaluation function of RKGA remains a weighted
Tchebycheff function. We speculate that this implementation helps us to obtain better results of weighted
Tchebycheff function, helps the search to stay on track in terms of the general evaluation function (weighted
Tchebycheff metric), and increases the chance to find non-supported efficient solutions. More research needs to
be done in this area where this approach is applied to other multi-criteria combinatorial optimization prob-
lems, preferably to problems with different shapes and irregularities in non-dominated sets to be able to
observe the performance of this approach further.

Memetic RKGA performed well on average for the 2-, 3-, 4-, and 5- objective tested problems as indicated
in the previous section. Based on these encouraging results, for future research, the presented algorithm can be
applied to several variants of mo-TSPs. In general, additional instances can be created following Hansen’s
scheme; i.e., selecting subsets of an appropriate size from TSPLIB instances to compute the costs for various
objectives. Also, interactive multi-objective decision making methods can be studied for mo-TSPs and its vari-
ants. In the presented research, user preferences are incorporated into decision making by means of ‘‘weight-
ing coefficients.” However, this approach might not be adequate for reflecting user preferences. Other ways of
incorporating user preferences could be by classification of objective functions into several classes (e.g., objec-
tive functions that should be decreased, objective functions that are allowed to be increased to a specified
upper bound, etc.) and implementation of bounds, indifference tradeoffs, etc.
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