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In this article we address specific inventory management decisions with transportation
cost consideration in a multi-level environment consisting of a supplier–warehouse–retail-
ers. We develop two models – namely, decentralized ordering model and centralized
ordering model to investigate the effect of collective ordering by retailers on the total
inventory cost of the system. A numerical study shows that the proposed model is robust
and generates reasonable cost savings. The models have potential in several multi-level
applications such as fresh or frozen food delivery to stores of different supermarkets or
the supply of medicine to a number of hospitals from a wholesaler.
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1. Introduction

Inventory models developed for the deployment of stock in a source-deliver supply chain take complexities of multi-level
distribution systems into account but usually fall short in considering transportation cost. Increasing oil costs, highway con-
gestion, increasing cost of short-hauls, and consolidation of distribution centers are examples of problems that may increase
transportation costs. Source-deliver chains desire not only agility but also lower costs in the network. According to Swenseth
and Godfrey (2002), upwards of 50% of total logistics costs can be attributed to transportation.

Classical inventory management strategies are not applicable and many companies are searching for new supply chain
inventory strategies to contain the rising costs of transportation, find offsetting savings, maintain low inventories, and also
ensure on-time deliveries. Even though there is considerable research on inventory control and transportation management,
much less is available on the combined problem. The traditional Economic Order Quantity (EOQ) model captures only the
trade-off between inventory carrying cost and setup or ordering cost. In this respect the transportation cost usually is ne-
glected or included in another cost such as setup cost.

In this paper, a single item inventory model is considered with several retailers, one warehouse and one supplier. We de-
velop two new models – namely (1) decentralized ordering and (2) centralized ordering. The decentralized ordering model is
a constructive extension of the classic optimal Economic Order Quantity (EOQ) model. In the presented model, we consider
two components in the per order cost: a fixed ordering cost which excludes transportation costs, and a discrete transporta-
tion cost. We try to minimize the total inventory cost while considering the transportation cost as a part of it. This cost is
imposed whether a truck is fully loaded or only partly loaded. Hence, we integrate inventory and transportation manage-
ment into one mathematical model. We develop the transportation cost based on a practical application. Since the number
of trucks required is always a positive integer, the transportation cost is a discrete function of the order quantity. We also
. All rights reserved.
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search for the optimal strategy of the warehouse (i.e., how often to place orders) to determine the optimal review period.
Simple algorithms are also presented to compute the optimal order quantity for the retailers and the optimal review for
the warehouse.

Based on our numerical experiment, we show that the transportation cost contains a considerable percentage of the total
inventory cost. There are new elements in our model which distinguish it from other extensions to the traditional EOQ mod-
els with regard to transportation cost; these features are discussed in the next section.

In the centralized ordering model, we propose a collective form of ordering by retailers and minimize the inventory cost
of the retailers and the warehouse jointly. Here retailers observe their customers’ demand, and then collaborate to explore
the optimal joint ordering, and send it to the warehouse. A continuous review model and a simple algorithm are applied to
determine the optimal order quantity and optimal re-order point of the system.

We show that total cost of the model can be decreased through collaboration among the retailers and the warehouse.
Numerical examples are used to solve both models and compare the cost savings.

The paper is structured into five sections. Section 2 presents a literature review dealing with inventory models and trans-
portation cost elements. Section 3 briefs the boundary of supply chain inventory problem, i.e. the inventory policy adopted
for retailers and the warehouse. Section 4 formulates the decentralized ordering policy. Then in Section 5, the model is ex-
tended to study the effect of a centralized (collective) form of ordering by the downstream entities and combined delivery on
total costs. The benefits of transportation considerations are then highlighted through numerical studies in Section 6. A sen-
sitivity analysis is conducted in this section as well to evaluate the outcomes of numerical result for different values. Finally,
Section 7 presents brief conclusions.
2. Literature overview

Several attempts have been made to extend the EOQ model to different conditions. For this purpose, a few authors
incorporated transportation costs into the lot-size determination analysis. Baumol and Vinod (1970) considered an
inventory-theoretic model of freight transport to determine order quantity and transportation. Their objective was to
minimize the total transportation, ordering, and carrying costs. The model however considered a per unit constant trans-
portation cost. Das (1974) worked on the same model with a few different assumptions. His model considered the deter-
mination of a fixed order quantity and safety stock sizes from the order size. Buffa and Reynolds (1977) extended these
works by adding stock-out costs and shipment discounts based on minimum full truckloads. Burwell et al. (1997)
developed a model for determining the reseller’s lot-size and price assuming that there are freight and all-unit quantity
discount breakpoints in the pricing schedule offered by the supplier. Blumenfeld et al. (1987) developed a decision
support tool for the analysis of the logistics operations at General Motors that resulted in a 26% reduction in logistics
costs. While allowing the analysis and models to be as simple as possible, the authors developed a tool that allowed
the Delco Electronics Division to examine the impact on total corporate cost due to different shipping strategies for
its products. The authors stated that the minimization of total network cost required the simultaneous determination
of optimal routes and shipment sizes and they focused on analyzing the trade-off between inventory and transportation
costs. Results obtained from the research are reported in a series of papers (Blumenfeld et al., 1985; Burns et al.,
1985).

Gupta (1992) considered a situation in which a fixed cost is incurred for a transport mode such as a truck that has a fixed
load capacity. He developed a model to determine the optimal lot-size, which minimizes the sum of the inventory holding,
ordering and transportation costs. Zhao et al. (2004) addressed the problem of evaluating the optimal ordering quantity in a
supplier–customer model by considering the transportation cost. They made a trade-off among production, inventory and
transportation costs where transportation cost involved fixed and variable costs.

The approach that we propose in Section 4 (the decentralized ordering model) is similar to Gupta’s (1992) but with some
extensions and differences. First, we use a multi-level (one warehouse–multiple retailers) model with a determined inven-
tory policy for each element. These policies facilitate safety stock at the retailers and warehouse. Second, we make a more
precise inventory cost estimation for carrying cost by adding the lead-time and the demand during the lead-time and by
including the distance between warehouse and retailers as a factor in the transportation cost. Third, the demands are as-
sumed to be stochastic. Finally, we consider both fixed and variable cost of transportation in our model while a fixed trans-
portation cost was only addressed in Gupta’s research.

In the area of centralized (collective) ordering at downstream entities, to the best of our knowledge, little research has
been carried out where many firms (retailers or manufacturers) collaborate and send their order for one item as a com-
bined-order to one supplier. However, there are many research publications on the Joint Replenishment Problem (JRP) in
which several items are replenished at a single stocking point. A complete definition of JRP is available in Goyal (1973,
1974) and Goyal and Satir (1989).
3. Structure of source-deliver inventory decisions

A two-level supply chain consisting of a warehouse (distribution center) and N retailers is considered in our model
(Fig. 1).



Fig. 1. The structure of the model.

A. Madadi et al. / Transportation Research Part E 46 (2010) 719–734 721
Each retailer and the warehouse have a set of control parameters that affects the performance of other components. In the
decentralized ordering model each individual level tries to optimize its own total cost. The objective is
Zd ¼ TCðQ �1Þ þ TCðQ �2Þ þ � � � þ TCðQ �NÞ þ TC�w
where TCðQ �j Þ is the total optimal cost for retailer j and TCw is the total cost for the warehouse. In the centralized model, the
total cost of the retailers and warehouse is optimized simultaneously, so we will have:
Minimize Zc ¼
XN

j¼1

TCjðQ jÞ þ TCw

 !
In our models the following notations are used:
N number of retailers

j
 retailer index (j = 1, 2. . .N)

Qj
 replenishment order quantity in units of retailer j

Aj, Aw
 fixed cost of order or cost per order event at the retailers and warehouse (not per unit) ($)

Vj, Vw
 variable purchase cost of item at retailer j and warehouse ($)

Dj, Dw
 demand quantity (yearly) observed by retailer j and the warehouse

dwj,

dsw
traveling distance from warehouse to retailer j and from supplier to warehouse (km)
rj, rw
 carrying charge in % of unit value at retailer j and at the warehouse (per year)

Sj, Sw
 re-order point at retailer j and at the warehouse

Pj, Pw
 service level at retailer j and at the warehouse

Kj, Kw
 safety factor at retailer j and at the warehouse

Lwj, Lsw
 lead-time from warehouse to retailer j and supplier to warehouse

VC
 truck capacity (items)

q
 density of retailers (retailers per square km)

m
 maximum number of stops made by a truck

Bw
 fixed cost per stock-out occasion ($) at warehouse

g
 number of trucks

Rw
 review period in the warehouse interval between orders

aw, as
 fixed cost of transportation per shipment (or per order) from warehouse to retailer j and supplier to warehouse

(same value for all retailers)

tw, ts
 variable cost of transportation from warehouse to retailer j and supplier to warehouse

SSj
 safety stock at retailer j
Throughout this study, we assume that the demand is stationary and that the forecast errors are normally distributed. We

make these assumptions for three reasons. First, empirically in many cases the normal distribution provides a better fit than
other distributions. Second, particularly if the lead-time is long relative to the base forecasting period, forecast errors in
many periods are added together, so we would expect a normal distribution through the Central Limit Theorem. Lastly,
the normal distribution leads to analytically good results. We assume that retailers offer one product type and demand ar-
rives at each retailer for this product. All retailers use the same forecasting technique. The demand which retailer j will face is
Dj ¼ lj þ ej ð1Þ
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where Dj is the forecast of customer demand by retailer j, lj > 0 is the average demand per period (yearly with limited var-
iation) and the ej are i.i.d. normally distributed error terms with mean zero and variance r2

j . We further assume that r2
j is

significantly smaller than lj so that the probability of negative demand is negligible. In this case E(Dj) = lj and
VarðDjÞ ¼ r2

j . The above statement results in the following lemma:

Proposition 1. Dw � N lw ¼
PN

j¼1lj;r2
w ¼

PN
j¼1r2

j

� �
.

The proof is straightforward due to the fact that the retailers’ forecast errors are normally distributed and using the theory
of Linear Combination of Random Variables.
3.1. Inventory policy of the retailers

We assume a continuous review, (S, Q), policy for all of the retailers. Initial inventory position is assumed to be zero.
When the inventory position (IPj) at each retailer decreases to or below Sj, an amount Qj will be ordered. For convenience,
we assume that all of the retailers use a similar service level, say P1 (see Silver et al., 1998) that determines the probability
of no stock-out per order cycle. In addition, lost sales are not considered in the model. The resulting inventory position will
be strictly larger than Sj and smaller than or equal to Sj + Qj. Finally we assume that lead-time demand is normally distributed
with average ljLwj

and variance r2
jLwj

at each retailer j. We define ljLwj
as the expected demand over a replenishment lead-

time, as follows:

EðDjLwj

Þ ¼ ljLwj
¼ Lwjlj ð2Þ
Since the variation of the lead-time from the warehouse to each retailer is zero, rjLwj
is calculated as follows:
rjLwj
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lwjr2

j

q
ð3Þ
Ultimately, we can compute the re-order point of each retailer as (see Silver et al., 1998):
PðDjLwj
< SjÞ ¼ Pj ¼ U

Sj � ljLwj

rjLwj

 !
¼ U

SSj

rjLwj

 !
¼ UðKjÞ ð4Þ
Since Sj � ljLWJ
¼ SSj, we develop an expression for Sj as follows:
Sj ¼ KjrjLwj
þ ljLWj

ð5Þ
In the following section we discuss the inventory policy of the warehouse.

3.2. Inventory policy of the warehouse

Suppose that the warehouse applies a periodic-review (R, S) inventory control policy in which at every R units of time, the
order-up-to point, Sw, is estimated from the observed demand. Additionally, the lead-time from the supplier to the ware-
house is assumed to be fixed. As mentioned in the previous section, the retailer demand is normally distributed. The
lead-time between the warehouse and each retailer is fixed, given the distance between the two.

Since the warehouse reviews its inventory level periodically, it may order at every fixed period of time in order to main-
tain an inventory position at a predefined base stock level Sw. This is a fair assumption considering the fact that the ware-
house as a wholesaler/distributor has good knowledge of the retailers, their ordering process and the demand of the
customers that the retailers observe. Following the analytical technique in Section 3.1, we assume that the warehouse uses
a simple service criteria Pw (based on P1). We define the re-order point at the warehouse using the following:
1� Pw ¼ 1�U
Sw � lwðRwþLswÞ

rwðRwþLswÞ

� �
ð6Þ
or,
Pw ¼ U
Sw � lwðRwþLswÞ

rwðRwþLswÞ

� �
¼ UðKwÞ ð7Þ
We develop the expression for the re-order point at the warehouse as
Sw ¼ lwðRwþLswÞ þ KwrwðRwþLswÞ ð8Þ
where lwðRwþLswÞ is the expected demand over a review period in the warehouse and rwðRwþLswÞ is the variance of the supply
time to the warehouse. We estimate these terms as described in the following.

We assume that the warehouse uses a periodic-review of inventory. In this respect whenever the inventory position (IPw)
at a review moment is lower than Sw, an order will be placed by the warehouse to the supplier to maintain an inventory
position of at least Sw. The expected value of IPw just before the order being placed is
EðIPwÞ ¼ Sw � ðEðDRwþLsw Þ ð9Þ
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where EðDRwþLsw Þ indicates the expected total retailer demand during the review period Rw. When IPw < Sw, the warehouse
sends an order to the supplier. The expected warehouse order size is
EðQ wÞ ¼ Sw � EðIPwÞ ð10Þ
Given (9) and (10) we find:
EðQ wÞ ¼ EðDRwþLsw Þ ¼ lwðRwþLswÞ ð11Þ
Due to the independence of the retailer orders and also because it is not certain that the retailers will order at the same time,
we have to estimate lwðRwþLswÞ. The frequency of each retailer demand is lj=Qj. Computing the amount of the order during the
review period of the warehouse, we find
lwðRwþLswÞ ¼ ðRw þ LswÞ
XN

j¼1

Q j

lj

Q j

� �
or
lwðRwþLswÞ ¼ ðRw þ LswÞ
XN

j¼1

lj ð12Þ
The variance of the supply time to the warehouse is
rwðRwþLswÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRw þ LswÞ

XN

j¼1

r2
j

vuut ð13Þ
The above definitions for the expected demand and variance are meant only for decentralized ordering policy. Later, we
redefine these terms for the centralized model.

In order to avoid the use of the standard normal, a simple expression to determine the safety factor for the periodic-re-
view case (Kw) has been proposed,. This approximation is as follows (Johnson et al., 1996):
Kw �
1
2

ffiffiffiffiffiffiffiffiffi
p=2

p� �
ln

Pw

1� Pw

� �
ð14Þ
Johnson et al. evaluated the above expression via an extensive set of simulations and found that it is fairly robust, providing
feasible results.

4. Decentralized ordering optimization

In this section we consider the warehouse and retailers to be distinct entities making individual decisions. We compute
the total cost of the warehouse and each retailer in following.

4.1. Retailer model

Here we consider the case that each retailer determines its own Economic Order Quantity and optimal cost. We assume
that the retailer’s costs include transportation costs, the cost of replenishment, and carrying cost. For convenience, we ne-
glect the cost of stock-out. Considering the warehouse inventory policy, the chance of retailers’ stock-out of the retailers
is very limited. The total cost to each retailer is defined as follows:
TCjðQ jÞ ¼ CRj
þ CCj

þ CTj
The first term indicates the replenishment cost and can be determined as:
CRj
¼ Aj

Dj

Q j
ð15Þ
The second term indicates the carrying cost and can be determined as:
CCj
¼

Q j

2
þ KjrjLwj

� �
Vjrj ð16Þ
Finally the third term indicates the transportation cost. To compute the transportation cost, we first assume that the contract
between the retailers and the warehouse is not Free On Board (FOB) so the warehouse is not responsible for the transpor-
tation cost (the same policy is assumed between the warehouse and supplier). Recall that the retailer demand is defined as a
yearly value. The transportation cost is decomposed into fixed and variable costs. Given Dj and Qj for each retailer j, the num-
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ber of the trips from the warehouse to retailer j is estimated as Dj

Q j
. Furthermore, gj ¼

Qj

VC

l m
indicates the number of trucks

needed per replenishment. Subsequently, the transportation cost can be estimated as
CTj
¼ aw þ tw

Q j

VC

� �
dwj

� �
Dj

Qj
ð17Þ
Given (15)–(17), the total cost of each retailer is estimated as
TCjðQ jÞ ¼ Aj
Dj

Q j
þ

Qj

2
þ KjrjLwj

� �
Vjrj þ aw þ tw

Q j

VC

� �
dwj

� �
Dj

Q j
With the substitution gj ¼
Qj

VC

l m
, we rewrite the total cost for retailer j as
TCjðQ jÞ ¼ Aj
Dj

Q j
þ

Qj

2
þ KjrjLwj

� �
Vjrj þ ðaw þ twgjdwjÞ

Dj

Q j
ð18Þ
The function TCj(Qj) is a convex function of Qj that can be re-written as
TCjðQ jÞ ¼
Aj

Dj

Qj
þ Qj

2 þ KjrjLwj

� �
Vrrj þ ðaw þ twgjdwjÞ

Dj

Qj
ðgj � 1ÞVC < Q j < gjVC

Aj
Dj

gjVC þ
gjVC

2 þ KjrjLwj

� �
Vrrj þ ðaw þ twgjdwjÞ

Dj

gjVC Q j ¼ gjVC

8><
>: ð19Þ
Eq. (19) indicates the fact that we have a piecewise function since TCj(Qj) is given by different expressions on various inter-
vals. To minimize the cost of the model, we should find the optimal value for Qj by solving the equation dTCjðQ jÞ

dQj
¼ 0. If TCj(Qj) is

continuous at Qj, then the derivative of TCjðQjÞ exists. In our case the following lemma is valid.

Proposition 2. TC(j) is continuous at j = Q.
Proof 1. This is true if and only if
lim TCðjÞ ¼ TCðQÞ
j! Q
Moreover, by definition a function is piecewise differentiable if it is differentiable through a specified domain, except for a
discrete set of points (such as Qj = gjVC). Therefore, there are two cases for Qj: Qj is on the line or on the step points.Case 1
((gj � 1)VC < Qj < gjVC):
dTCjðQ jÞ
dQj

¼ 0) �Aj
Dj

Q2
j

þ Vrrj

2
� aw

Dj

Q 2
j

�
twdwjgjDj

Q 2
j

¼ 0
Subsequently,
Qg
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjðAj þ aw þ twgjdwjÞ

Vrrj

s
ð20Þ
and,
TCjðQ g
j Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjVrrjðAj þ aw þ twgjdwjÞ

q
þ KjrjLwjVrrj ð21Þ
Case 2 (Qj = gjVC):
TCjðQ g
j Þ ¼ Aj

Dj

gjVC
þ

gjVC
2
þ KjrjLwj

� �
Vrrj þ ðaw þ twgjdwjÞ

Dj

gjVC
or
TCjðQ g
j Þ ¼ Aj

Dj

gjVC
þ

gjVC
2
þ KjrjLwj

� �
Vrrj þ aw

Dj

gjVC
þ twdwj

Dj

VC
ð22Þ
h

We develop an algorithm to find Q �j and TCjðQ �j Þ. The idea behind this algorithm is similar to the classical EOQ model with
the quantity discount. By applying this algorithm first we explore the feasible Q 0js on the lines and compute the correspond-
ing costs. In addition, we calculate the cost at the step points. By comparing the obtained costs, we can determine the min-
imum cost and the corresponding optimal order quantity for each retailer. In this respect, suppose that in (18) gj = 1, and we
find:
TCjðQ 1
j Þ ¼ Aj

Dj

Q j
þ

Q j

2
þ KjrjLwj

� �
Vrrj þ ðaw þ twdwjÞ

Dj

Q j
ð23Þ
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Given (20), the optimal order quantity can be computed by the following relation:
Q 1
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjðAj þ aw þ twdwjÞ

ðVrrjÞ

s
ð24Þ
If Q1
j < VC, then Q �j ¼ Q1

j and the corresponding total cost can be computed by using (21) or else if Q1
j ¼ VC, then Q �j ¼ VC and

the corresponding total cost can be computed by using (23). We set the result of (23) as the upper bound (UB) of the total
annual cost. Ordering with gj > 1 trucks will not be feasible when the following relation holds:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DjVrrjðAj þ aw þ twgjdwjÞ
q

þ KjrjLwjVrrj > UBj:
Therefore,
gj >

ðUBj�KjrjLwjVr rjÞ2

2DjVr rj
� Aj � aw

h i
twdwj

¼ ej ð25Þ
Based on the above analysis, the optimal order quantities associated with the total cost function can be computed by apply-
ing following algorithm:

Algorithm 1.

Step 1. For each retailer j
Step 2. Let gj = 1, Compute the Q1

j by using Eq. (24).
Step 3. If Q1

j < VC then set Q �j ¼ Q 1
j as the optimal order quantity, compute Eq. (21) for gj = 1 and go to Step 7.

Step 4. Else set Q �j ¼ VC then compute Eq. (23) and set the result as UBj.
Step 5. Compute ej by using Eq. (25).
Step 6. For gj = 2 to bejc
Step 6.1. Compute Eq. (20). If ðgj � 1ÞVC < Q g

j < gjVC then set Q �j ¼ Qg
j and compute Eq. (21), else go to step 6.3.

Step 6.2. Set UB0j as the minimum of all computed TCjðQg
j Þ in the previous step and set the corresponding Qg

j as Q �j .
Step 6.3. Set Q g

j ¼ gVC and compute Eq. (22).
Step 6.4. Set UB00j as the minimum of all computed TCjðQ g

j Þ in step 6.3 and set the corresponding Qg
j ðQ

g
j ¼ gVCÞ as Q �j .

Step 6.5. Find the minimum of UBj, UB0j and UB00j . Write the result as optimal total cost ðTCjðQ �j ÞÞ and the corresponding Q �j .
Step 7. End
4.2. Warehouse model

We search for the optimal strategy of the warehouse (i.e., how often to place orders) that will minimize the costs of total
inventory cost. Here the total cost is comprised of replenishment cost, carrying cost, shortage cost, and transportation cost.
Hence, the total cost of the warehouse can be defined as follows:
TCw ¼ CRw þ CCw þ Csw þ CTw
where CRw ; CCw and Csw can be determined as follows
CRw ¼
Aw

Rw
ð26Þ

CCw ¼
lwðRwþLswÞ

2
þ Kw:rwðRwþLswÞ

� �
Vwrw ð27Þ

Csw ¼
Bw

Rw
PuPðKwÞ ð28Þ
As shown in (28), the expected stock-out cost per year is obtained by multiplying the expected number of trips per year 1
Rw

� �
,

the probability of stock-out ðPu�ðKwÞÞ and the cost per stock-out (Bw).
In order to determine the transportation cost from the supplier to the warehouse, we use the same approach that was

used for retailer transportation cost. Therefore, we obtain:
CTw ¼ as þ ts
lwRw

VC

� �
dsw

� �
1

Rw
ð29Þ
where lw
Rw

is the replenishment order quantity of the warehouse. Consequently, given (12), (13), (26), (27), (28), (29) and Prop-
osition 1 we obtain:
TCwðRwÞ ¼
Aw

Rw
þ ðRw þ LswÞlw

2
þ Kwrw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRw þ LswÞ

p� �
Vwrw þ as þ ts

lwRw

VC

� �
dsw

� �
1

Rw
þ Bw

Rw
Pu�ðKwÞ
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Let z ¼ lwRw
VC

l m
, then, for Rw ¼ zVC

lw
we can write TCw(Rw) as a function of z:
TCwðzÞ ¼
Awlw

zVC
þ ðzVC þ LswlwÞ

2
þ Kwrw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zVC
lw
þ Lsw

� �s !
Vwrw þ

ðas þ tszdswÞlw

zVC
þ Bwlw

zVC
Pu�ðKwÞ ð30Þ
and for ðz�1ÞVC
lw

< Rw < zVC
lw

:

TCwðRwÞ ¼
Aw

Rw

ðRw þ LswÞlw

2
þ Kwrw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRw þ LswÞ

p� �
Vwrw þ

ðas þ tszdswÞ
Rw

þ Bw

Rw
Pu�ðKwÞ ð31Þ
In Eq. (32) we just need to check integer values of lwRw
VC to determine the minimum total cost, whereas in (33), the optimal

review period at the warehouse can be determined by setting the derivative of the total cost Eq. (33) to zero. Before that we
prove following proposition:

Proposition 3. In Eq. (33), TCw is convex in Rw and is minimized at R�w.

Proof. Given the first derivative with respect to Rw, set = 0:
Aw

R2
w

þ ðas þ tszdswÞ
R2

w

þ BwPu�ðKwÞ
R2

w

¼ lwVwrw

2
þ KwVwrwrw

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRw þ LswÞ

p

Since lwVwrw

2 > 0, always:
½Aw þ ðas þ tszdswÞ þ BwPu�ðKwÞ�
R2

w

>
KwVwrwrw

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRw þ LswÞ

p

Dividing both sides by Rw + Lsw:
2½Aw þ ðas þ tszdswÞ þ BwPu�ðKwÞ�
R2

wðRw þ LswÞ
>

KwVwrwrw

4ðRw þ LswÞ1:5
As a result the 2nd derivative of TCw is
d2TC

d2Rw

¼ 2½Aw þ ðas þ tszdswÞ þ BwPu�ðKwÞ�
R2

wðRw þ LswÞ
� KwVwrwrw

4ðRw þ LswÞ1:5
> 0;
This implies that the function is convex and results in a minimum value and indicates that R�w is:
R�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Aw þ ðas þ tszdswÞ þ BwPu�ðKwÞ�

lw þ Kwrwffiffiffiffiffiffiffiffiffiffiffiffi
RwþLsw

p
� �

Vwrw

vuuut ð32Þ
h

The result in (34) does not result in a closed form solution for Rw. We propose an iterative solution to compute Rw. The

suggested procedure is to initially set Rdet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Aw
lwVwrw

q
(which is the optimal re-order point of the deterministic case) and then

compute R�w in each iteration. Because of the convex nature of the total cost function, convergence to the optimal value is
ensured if enough iterations are completed.

To find R�w, we first check all integer values of lwRw
VC and determine which one minimizes (32). We start by considering

Rw = 1, which means the warehouse orders enough to satisfy all demand simultaneously. We determine the number of trucks
needed to deliver this amount. This is an upper bound for number of trucks or z. In that case we can analyze all the integer
points within that domain. Then we utilize (33) and (34) to determine other possible values (where lwRw

VC is not integer). This
procedure can be outlined as follows:

Algorithm 2.

Part 1: Compute Rw for integer points.
Step 1. Set Rw = 1 and calculate the domain of z.
Step 2. Compute TCw(z) using Eq. (30).
Step 3. While z > 0z = z � 1 and go to step 2.
Step 4. Set TCint as the minimum of all computed TCw(z) in Step 2.
Part 2: Compute Rw for non-integer points.

Step 5. Initialization Set i = 1 and R0
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aw

lwVwrw

q
.

Step 6. Compute Ri
w and TCwðRi

wÞ using Ri
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½AwþðasþtszdswÞþBwPu�ðKwÞ�

lwþ
Kwrwffiffiffiffiffiffiffiffiffiffiffiffi
Ri�1

w þLsw

p
� �

Vwrw

vuut and Eq. (31).
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Step 7. Iteration While jTCwðRi�1
w Þ � TCwðRi

wÞj > e, i = i + 1 and go to 6.
Part 3: Comparison.
Step 8. Compare the values obtained in Steps 4 and 7 and return the smallest TCw(Rw) and the corresponding R�w.
Step 9. End
5. Centralized ordering (collective) optimization

We make a number of different assumptions in the centralized ordering model. In the decentralized ordering, it is as-
sumed that each retailer finds its optimal order quantity, sends it to the warehouse, and receives it afterward. The main
motivation of the centralized ordering policy is to explore whether such a policy leads to a lower total system-wide cost
by improving the inventory and transportation decisions.

We propose a collective form of ordering by retailers and plan to minimize the inventory cost of the retailers and the
warehouse jointly. The warehouse observes a sequence of demands from a group of retailers positioned in a given region.
Ideally, these demands should be shipped immediately. Retailers observe their customers’ demand and then collaborate
to explore the optimal joint order amount and send it to the warehouse. We formulate a continuous review model for
the centralized scenario to find the optimal re-order point, S, and optimal order quantity, Q, that minimize overall system
costs. Based on this introduction, the retailers decide the re-order point and the warehouse determines the replenishment
quantity.

We also assume the use of a similar forecasting technique and inventory policy that we used in the former model. We set
the objective function of the system under consideration as:
MinimizeZc ¼
XN

j¼1

TCjðQ jÞ þ TCw

 !
Therefore, the warehouse and the retailers must optimize their decision variables in a way to reduce the total cost of the
system. This means that we first find the total cost of the system (which is the summation of the warehouse and retailers
costs) and then try to determine the optimal value for the joint order size.

Each retailer’s costs include transportation cost, cost of replenishment and carrying cost, and cost of stock-out. We adopt
the model of Daganzo (2005) for one-to-many distribution model transportation cost and Burns et al. (1985) for distribution
strategy to minimize transportation cost, and we develop a formula to include the impact of the transportation cost in our
model. First we assume a vehicle is routed in a way to minimize total distance traveled, which is the main factor in our mod-
el. We make a clustering of the retailers in a region (Fig. 2). Therefore, it is assumed that we want to solve a national (regio-
Fig. 2. Clustering of the Retailers.
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nal) distribution problem. Then all the vehicles are considered for a combined tour. In this case, the total distance to serve all
the retailers in the given region includes three elements: (1) Line-Haul (trip from warehouse to the first retailer in the region
or entrance of the region); (2) Back-Haul (trip from last retailer to the warehouse); and (3) local (trips from the first retailer
to the last one in the region). In our model we only focus on Line-Haul and neglect Back-Haul as we have done for decen-
tralized ordering model.

Several methodologies have been applied to obtain vehicle routes from origin(s) to destination(s) at a minimum cost such
as Shortest Path Problem, Minimum Spanning Tree, Vehicle Routing Problem, Traveling Salesman Problem, etc. In this re-
search we try to estimate the total distance to serve all the retailers or the expected distance travel of the truck(s) and ne-
glect the distribution methodologies and the routing problems. Therefore, given the assumptions mentioned before, we
have:
Expected total distance traveledðdwRÞ ¼ Line-Haul distanceþ local distance ð33Þ
To compute the Line-Haul distance, we suppose retailer i is the first retailer visited in the region and we label the distance
between this retailer and the warehouse as dwi. Therefore, we have:
Yearly Line-Haul cost of transport ¼ aw þ twdwi
Q R

VC

� �� �PN
j¼1Dj

Q R
ð34Þ
In the above equation, QR indicates the total combined-order quantity of all the retailers. Now, we should compute local dis-
tance. Given the analysis of the shortest Euclidean path connecting m customers located randomly in a delivery region, our
local distance can be approximated by (see Burns et al., 1985 and Daganzo 2005)
Local distance ¼ k

ffiffiffiffiffiffiffiffi
mN
q

s

where N is the number of the retailers and m indicates the maximum number of the stops made by a truck (vehicle), q indi-
cates the retailer density (retailers per square kilometer) and k is a constant value. However, due to the fact that more than
one truck might need to carry the goods, the average of local distance per year is
k
ffiffiffiffiffi
mN
q

q
QR
VC

	 

0
@

1
A
PN
j¼1

Dj

Q R
ð35Þ
We now have:
Total cost of transport ¼ aw þ twdwi
Q R

VC

� �
þ

k
ffiffiffiffiffi
mN
q

q
QR
VC

	 

0
@

1
APN

j¼1Dj

Q R
ð36Þ
Assuming m = N yields an upper bound in our problem. This assumption is discussed later in Section 6.2.1. Hence, the total
combined cost of transport is:
CTR ¼ aw þ twdwi
QR

VC

� �
þ

kN
ffiffiffi
1
q

q
QR
VC

	 

0
@

1
APN

j¼1Dj

Q R
ð37Þ
We stated that only one item is being distributed in our model. Thus, the cost of replenishment will be equally distributed
among the retailers. The combined cost of replenishment is given by:
CRR ¼
AR
PN

j¼1Dj

QR
ð38Þ
Moreover, we assume that the retailers decide the re-order point. However, carrying costs might be different in each retailer.

From the decentralized ordering model, we found the carrying cost for each retailer as, CCj
¼ Qj

2 þ KjrjLwj

� �
Vrrj. Here we pro-

pose an allocation rule based on the ratio between each retailer demand to the total demand and the retailers as Q j ¼
QRDjPN

j¼1
Dj

,

hence, the combined carrying cost is as follows:
CCR ¼
QR

2
þ KRrRLwR

� �XN

j¼1

Vjrj ð39Þ
In the preceding equation, KR indicates the safety factor of the retailers and is determined by the retailers for both the ware-
house and retailers. LwR indicates the average lead-time from warehouse to the retailers in the region (for convenience we
assume that this value is fixed and depends on the Line-Haul and local distances). Ultimately, in centralized ordering lRLwR

and rRLwj
can be determined by:
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lRLwR
¼ LwR

XN

J¼1

lj ð40Þ
and
rRLwR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LwR

XN

j¼1

r2
j

vuut ð41Þ
Consequently, the total cost of the retailers is:
TCRðQ R;KRÞ ¼
AR
PN

j¼1Dj

Q R
þ Q R

2
þ KRrRLwR

� �XN

j¼1

Vjrj þ aw þ twdwi
QR

VC

� �
þ

kN
ffiffiffi
1
q

q
QR
VC

	 

0
@

1
APN

j¼1Dj

Q R
ð42Þ
In the same way, the cost of the warehouse is determined as follows:
TCwðQ R;KRÞ ¼
Aw
PN

j¼1Dj

Q R
þ Q R

2
þ KRrwLsw

� �
Vwrw þ as þ tsdsw

QR

VC

� �� �PN
j¼1Dj

QR
þ

BwPu�ðKRÞ
PN

j¼1Dj

Q R
ð43Þ
Recall that we assume that the retailers decide the re-order point and the warehouse determines the replenishment
quantity. We try to determine the optimal values for this situation in the following section.

5.1. Joint optimization

The goal of centralized ordering is to jointly minimize the combined inventory cost of retailers and the warehouse. Given
(41) and (42), the total cost is
TCðQR;KRÞ ¼
ðAR þ AwÞ

PN
j¼1Dj

QR
þ Q R

2

XN

j¼1

Vjrj þ Vwrw

 !
þ KR rRLwR

XN

j¼1

Vjrj þ rwLsw Vwrw

 !

þ ðaw þ asÞ þ ðtwdwi þ tsdswÞuþ
kN

ffiffiffi
1
q

q
u

0
@

1
APN

j¼1Dj

QR
þ

BwPu�ðKRÞ
PN

j¼1Dj

Q R
ð44Þ
where u ¼ QR
VC

	 

.

Proposition 4. TCðQR;KRÞ is convex in KR.

Proof. Since the derivative of cumulative distribution function is probability density function, we get
dPu�ðKRÞ
dKR

¼ �f ðKRÞ
As a result
dTCðQ R;KRÞ
dKR

¼ rRLwR

XN

j¼1

Vjrj þ rwLsw Vwrw

 !
�

Bw
PN

j¼1Dj

Q R
f ðKRÞ ¼ 0
Given the density function of the standard normal distribution, we have,
dTCðQ R;KRÞ
dKR

¼ rRLwR

XN

j¼1

Vjrj þ rwLsw Vwrw

 !
�

Bw
PN

j¼1Dj

Q R

1ffiffiffiffiffiffiffi
2p
p exp �K2

R

2

 ! !
¼ 0
Finally,
d2TCðQ R;KRÞ
dKR

¼
Bw
PN

j¼1Dj

Q R

2KRffiffiffiffiffiffiffi
2p
p exp �K2

R

2

 ! !
� 0
From the previous discussion, we have two scenarios. For Q R ¼ uVC we can write TCðQR;KRÞ as:
TCðQR;KRÞ ¼
ðAR þ AwÞ

PN
j¼1Dj

uVC
þuVC

2

XN

j¼1

Vjrj þ Vwrw

 !
þ KR rRLwR

XN

j¼1

Vjrj þ rwLsw Vwrw

 !

þ ðaw þ asÞ þ ðtwdwi þ tsdswÞuþ
kN

ffiffiffi
1
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1
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j¼1Dj

uVC
þ

BwPu�ðKRÞ
PN

j¼1Dj

uVC
ð45Þ
h



Table 1
Decentralized ordering – retailers optimal quantities and optimal cost.

lj rj Lwj rjLwj
Vj rj Aj dwj Pj Kj Q�j CRj

CCj
CTj TCjðQ�j Þ

Retailer 1 857 15 .04 2.9 90 1.0 100 15 0.95 1.64 90 952.2 4485.5 3094.7 8532.4
Retailer 2 698 12 .04 2.3 90 1.0 100 25 0.9 1.28 94 742.6 4501.4 3527.1 8771.1
Retailer 3 983 24 .08 6.7 90 1.0 100 20 0.99 2.33 100 983.0 5921.3 3932.0 10836.3
Retailer 4 687 6 .05 1.3 90 1.0 100 25 0.95 1.64 94 730.9 4424.6 3471.5 8627.0
Retailer 5 786 13 .11 4.3 90 1.0 100 28 0.90 1.28 100 789.0 5001.8 4102.8 9893.6
Retailer 6 921 21 .09 6.4 90 1.0 100 18 0.90 1.28 98 939.8 5144.7 3477.2 9561.7

Total cost 5137.4 29,479.3 21,605.4 56,222.1
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For ðu� 1ÞVC < QR < uVC, following proposition can be satisfied:

Proposition 5. For ðu� 1ÞVC < QR < uVC; TCðQR;KRÞ is convex in KR, QR and jointly.

Proof. We earlier proved that TCðQ R;KRÞ is convex in KR in Proposition 4. For QR we get:
d2TCðQ R;KRÞ
dQR

¼
2ðAR þ AwÞ

PN
j¼1Dj

Q 3
R

þ 2 ðaw þ asÞ þ ðtwdwi þ tsdswÞuþ
kN

ffiffiffi
1
q

q
u

0
@

1
APN

j¼1Dj

Q3
R

þ
2BwPu�ðKRÞ

PN
j¼1Dj

Q 3
R

� 0
Now need to prove the jointly convexity. For this purpose we need to build Hessian matrix.
It is straightforward to show that following relation is satisfied:
d2TCðQ R;KRÞ
dKR

d2TCðQ R;KRÞ
dQRdKR

d2TCðQ R;KRÞ
dQRdKR

d2TCðQ R;KRÞ
dQR

���������

���������
� 0
The above propositions also result in following equations for KR and QR:
KR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vuuut ð46Þ
and
Q �R ¼
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u þ BwPu�ðKRÞ
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PN
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vuuuut ð47Þ
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Now we apply following procedure to determine the solution for the centralized model.

Algorithm 3.

Part 1: Integer points

Set QR ¼
PN

j¼1Dj and calculate domain of u .Set u 2 ð0;
PN

j¼1
Dj

VC �

Step 1.Set Qj ¼ u:VC and compute h ¼
Bw

PN

j¼1
Djffiffiffiffi

2p
p

QR rRLwR

PN

j¼1
VjrjþrwLsw Vwrw

� �. If h > 1 then compute Kj by using Eq. (47) else Kj = 0.

Step 2. Compute TCðQ R;KRÞ using Eq.(46).
Step 3. While u > 0;u ¼ u� 1, go to step 1.
Step 4. Set TCint(QR, KR) as the minimum of all computed TC(QR, KR) in Step 2.
Part 2: non-integer points.
Step 5. Initialization Set i = 1 and Q0 ¼ EOQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðARþAwÞ

PN

j¼1
DjPN

j¼1
VjrjþVwrw

� �
vuut .

Step 6. Compute h. If h > 1 then Ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Djffiffiffiffi
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VjrjþrwLsw Vwrw
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vuuut else Kj = 0.

Step 7. Compute QR and TC(QR, KR) using Qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
PN

j¼1
Dj ðARþAwÞþðawþasÞþðtwdwiþtsdswÞuþ

kN
ffiffi
1
q
p
u þBwPu�ðKiÞ

� �
PN

j¼1
VjrjþVwrw

� �
vuuut and Eq.(45).
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Step 8. Iteration While jTCiðQR;KRÞ � TCi�1ðQ R;KRÞj > e, i = i + 1 and go to 6.
Part 3: Comparison.
Step 9. Compare the values obtained in Step 4 and Step 8 and return the smallest TC(QR, KR) and the corresponding Q �R and
K�R.
6. Numerical analysis

In order to analyze the discussed model we consider a numerical example. The objective of this section is twofold. First,
we want to calculate the defined costs of each model and calculate the optimal order quantity of each retailer, and the sec-
ond, we want to compare the total costs with different scenarios. The number of the retailers, N, is assumed to be six and one
warehouse is considered. For the decentralized ordering case, input data and resulting inventory costs are shown in Tables 1
and 2, respectively, for the retailers and the warehouse. In this case, we set VC = 100, ts = tw = $15 and as = aw = $100. The re-
sults are summarized in Tables 1–3, respectively, for decentralized and centralized model. We implemented the procedures
in MATLAB 7.4.0.

Using the results of Table 1 and 2, we see that the total cost of the model for the decentralized ordering is about $97,030.
The proportion of total cost for each individual retailer attributable to transportation to the warehouse is 36%, 40%, 36%, 40%,
41% and 36%.The warehouse transportation cost is high as well and contains 38% of the total cost. Finally, Table 1 shows that
contrary to what some inventory managers believe, in certain circumstances, full truck loading is not always cost-effective
(we discuss this case more in Section 6.2.)

To establish the value of our approach consider the retailer 1 in Table 1 where D = 857 units, A = 100, h = 90. Using the
classical EOQ we find EOQ = 44 and the total cost roughly $3928, whereas we found Q �1 ¼ 90 and TC1 = $8603. Now suppose
that we consider Q* = 44 of classical EOQ as the optimal order quantity then the total cost, including transportation cost, is
equal $10,693, which is 25% above the total cost that we determined in the first retailer.

Table 3 illustrates the solution for the centralized model. The total cost of the centralized ordering model is $48,180. The
main observation from Table 3 can be the fact that transportation contributes only 2.6% of the total cost and, in contrast, the
carrying and replenishment costs contribute much more to the total cost, with 81% and 15%, respectively.

To build a better understanding of the performance differences, we make Table 4 to compare the total cost of the decen-
tralized ordering model with the centralized ordering model and display the improvements. As shown, the effects of using
the centralized ordering model in our inventory model immediately become noticeable; the difference between the total
costs of the decentralized and centralized ordering model is over $48,000 which is over 50% of the decentralized ordering
cost.

The centralized ordering model also results in a significant costs savings in transportation cost which is over $38,000. A
noticeable cost saving is achieved in carrying cost which is over $18,000. Since most of the cost reduction is achieved in the
transportation cost and carrying cost and both of these costs contain a high percentage of the total cost in our model, making
a collective ordering among the retailers can considerably reduce the total cost.

We also observe a slight increase in replenishment cost and shortage cost of the centralized ordering model. This is
mainly because of the fact that warehouse order size quantity (=R�w � lw ¼ :0405 � 4935 � 200) in the decentralized ordering
model is greater than the Q �R centralized case.
le 2
entralized ordering – warehouse optimal review period and optimal cost.

lw rw Vw rw Kw dsw Bw Pw R�w CRw CCw CTw Csw TCwðR�wÞ

arehouse 4935 91 60 1 1.6 20 150 0.95 0.0405 1974.0 20,877.0 17273.0 202.8 40,326.8

le 3
tralized ordering.

wi k q Q�R K�R CRw CCw CTw Csw TCðQ�R;K
�
RÞ

5 .6 0.1 100 1.1592 8883.0 31,748.0 736.4 911.9 42,279.3

le 4
t comparison.

CRw CCw CTw Csw Total cost

etailer costs 5137.4 29,479.3 21,605.4 – 56,222.1
arehouse costs 1974 20,877 17,273 202.8259 40,326.8

otal Decentralized ordering costs 7111.4 50356.3 38878.4 202.8259 96,548.9
entralized ordering costs 8883 31,748 736.3842 911.9496 42,279.3
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The most salient conclusion that can be drawn from these results is that the centralized (collective) optimization has low-
er cost and so better performance compared to decentralized optimization, and few parameters are in fact impacting the
total costs of inventory including the transportation costs. However, we should note that the magnitude of savings is also
highly dependent on numerical values and parameters which are used to solve the models. In the next section we utilize
a sensitivity analysis for further investigation.
6.1. Sensitivity analysis

Our numerical example illustrates the sensitivity of the solution relative to the model parameters. In this section a few
scenarios have been chosen to examine the effect of our assumptions on the total cost of the model. We also clarify a few of
our observations from the analysis.
6.1.1. Change in q
In the first scenario we examine different values for the location density parameter of the retailers. In this case the total

cost of decentralized ordering remains unchanged. The result is represented in Fig. 3. From the result we realized that for
smaller q the total cost of the centralized ordering is larger. This implies that when retailers are more concentrated, central-
ized ordering model has even higher efficiency.
Fig. 3. Change in retailer density q.

Fig. 4. Change in number of visited retailers N.



Fig. 5. Change in variable cost of transportation.
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6.1.2. Change in N
Recall that in the centralized ordering model we assumed that every retailer is visited in every trip or m = N. Here we

observe different scenarios when N � 1, N � 2, . . ., 1 of the retailers are visited, the resulting costs shown in Fig. 4. We ob-
serve a slight reduction in the total cost from N = 6 to N = 1.

6.1.3. Change in variable cost of transportation
In the third scenario, we vary the price for the variable cost of transport from warehouse to retailers and supplier to ware-

house. We move the value of this cost from $15 to $30 in increments of five units. The results obtained here still are in favor
of centralized ordering and show that as much as we increase the full load cost of transport, the difference between costs of
decentralized ordering and centralized ordering will grow (see Fig. 5).

6.1.4. Change in carrying cost
In the last scenario, we vary the carrying cost of the warehouse and retailers to find out the effects of that on our policy.

We keep the ratio of the carrying cost of the warehouse to the retailers at a constant rate of 2/3; for example, if the carrying
cost of the retailers is 120 then carrying cost of the warehouse must be 80. This is extended for more carrying cost with incre-
ments of 30 units and should be taken into consideration when reading the Fig. 6.

Given Fig. 6, the most evident conclusion is that for higher retailer and warehouse carrying costs, the centralized ordering
model still has better cost value.

6.2. Key observations

Observation 1. For low variable transportation costs or for short distances, it is not economical to use full truckloads. How-
ever, for large distances or high variable transportation costs it is always preferred to order full truckloads.
Observation 2. In the decentralized ordering model, full truckloads are less preferred as the carrying cost at the retailers
increase.
Fig. 6. Change in carrying cost.
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Observation 3. In the decentralized ordering model as the carrying cost at the warehouse increases the corresponding
review period decreases.
Observation 4. In the centralized ordering model, full truckloads are less preferred as the carrying cost at the retailers and
the warehouse increase.
Observation 5. In the centralized ordering model, as the carrying cost at the retailers and the warehouse increase, the cor-
responding order quantity and safety factor decrease.
7. Conclusions

We have formulated a multi-level inventory model that includes transportation costs for planning the replenishment of a
single commodity. The contributions of the paper to the literature are threefold. First, to extend traditional Economic Order
Quantity model in order to minimize the total inventory cost while considering a discrete transportation cost. Second, deter-
mining the optimal strategy of the warehouse to decide how often to place orders. Finally, to develop a collective form of
ordering by retailers and plan to minimize the inventory cost of the retailers and the warehouse jointly.

We developed two models considering the scenarios of centralized ordering and decentralized ordering. A numerical
example was solved for both models, with some sensitivity analysis for the centralized ordering scenario. Results indicate
that having collaboration among the retailers and the warehouse or applying a collective ordering strategy results in reduced
costs when compared to the decentralized ordering strategy. A remarkable result that was achieved by the numerical exam-
ple indicates that utilizing full truckloads is not always optimal. Furthermore, it was shown that the transportation cost con-
tains a considerable percentage of the total cost, while this cost has been usually overlooked.

The models presented here can be extended to include a multi-item multi-level inventory model or true costs of trans-
portation, like environmental costs, or costs of return flow due to lack of demand (excess inventory) or customer returns. A
further extension could be obtaining a solution that shares the benefits of the collaboration.
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