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of three metaheuristic methods. These metaheuristics can easily be modified to accommodate different
consumer preference distribution assumptions.
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1. Introduction

Assortment planning problems can roughly be divided into
two groups, depending on how consumer choice is modeled—
discrete versus locational choice. The appropriate model depends
on the problem settings. (Mayorga presents a detailed review of
existing literature that focuses on assortment decisions (Chapter
3, [7]).) In this paper, we focus on locational choice models under
two different retail environments. In a make-to-order environ-
ment, consumers are willing to wait for their most preferred
product to be delivered. In a make-to-stock environment with
static substitution, consumers will not purchase if their most
preferred product is not in stock. Thus inventory decisions must
also be made in the static substitution environment.

A locational model for consumer choice was first proposed by
Lancaster [6]. Under a locational choice model, the location of a
product specifies its set of attributes; similarly each individual is
characterized by her ideal point in the attribute space. The utility
a consumer gets from a product is a function of the distance
between the product’s location and her ideal point. Thus, the
locational choice model is a utility based model where the firm
can control the rate of substitution between products by choosing
their locations relative to each other.

Gaur and Honhon [2] are the first to study the assortment
problem under a locational choice model while incorporating
inventory decisions; they solve the static substitution problem,
using a locational choice model with horizontal differentiation.
Under horizontal differentiation, consumer preferences for an
attribute can be modeled as a location on a line (e.g. shoe size)
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and the distribution of these preferences is known. They show
that, under static substitution, the optimal assortment consists of
products distributed on the attribute space such that there is no
substitution among them and market coverage is continuous.
When the distribution of consumer preferences for the horizontal
attribute is uniform, the optimal assortment (location of products
on the variety space and number of products) is known. On the
other hand, when the distribution of consumer preferences is
unimodal, the optimal solution can be found by conducting a
single variable line search. Thus, we see that when consumer
choice is based only on horizontal differentiation, the optimal
assortments can be easily found.

Unfortunately, computational tractability is lost when vertical
differentiation among products is allowed. Mayorga [7-9] con-
sides an assortment planning problem in which products are both
horizontally and vertically differentiated. With only horizontal
differentiation, consumer choice is based only on an individual’s
idiosyncratic preferences (e.g., black vs. white earphones). The
addition of vertical differentiation allows another type of
consumer choice, based on consumers’ taste for quality (e.g.,
regular vs. noise canceling earphones). The assortment and
inventory management problem under different substitution
environments is investigated by Mayorga [7,8], for the case that
consumer preferences for the horizontal attribute are distributed
uniformly, and extended by Mayorga et al. [9] to consider more
general distribution assumptions. In the case of static substitu-
tion, the inventory and assortment problems completely decouple
as was the case with Gaur and Honhon [2], such that given an
assortment, the optimal inventory levels can be obtained
analytically. The assortment problem, however, proves more
difficult. Mayorga et al. [9] show that some properties of the
optimal horizontal attributes are the same as in [2]; that is,
products are spaced such that there is no substitution between
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them and market coverage is continuous. However, to find the
optimal assortment using these properties, one still needs to
choose the number of products and the quality level of each
product. In general, solving the problem to optimality requires an
enumerative search over all possible assortment sizes and quality
combinations. Mayorga et al. [9] show that the problem can be
greatly simplified in some cases. In particular, they give condi-
tions under which the optimal assortment is composed of
products that all have the same quality level, reducing the
problem to the previously solved problem with only horizontal
differentiation. While they show that over a large region of the
parameter space these conditions are indeed satisfied, we are left
with an open problem when the conditions are not satisfied. In
this case, the optimal assortment can be of mixed quality levels
and neither the optimal number of products to carry or attributes
are known.

In this paper we are interested in approximating the optimal
assortment, even if it consists of multiple quality levels, for both
the make-to-order and make-to-stock with static substitution
environments. When the distribution of consumer preferences for
the horizontal attribute is uniform, the problem can efficiently be
solved to optimality [10]. The complexities introduced when
consumer preferences follow a unimodal distribution are dis-
cussed and the assortment problem with multiple quality levels is
formulated. We then provide an introduction to the metaheuristic
techniques utilized and discuss the results of a computational
study comparing the solution quality of these techniques. We
show that these methods provide high quality solution even in
cases where the optimal solution has not yet been characterized.
To our knowledge, metaheuristic techniques have not been
applied to solve assortment problems. The goal of this paper is
to test the viability of using different metaheuristic techniques to
solve assortment planning problems when the optimal solution
cannot be found analytically. Thus, instead of focusing on creating
the most efficient single metaheuristic that is well suited to solve
this assortment problem, we test several metaheuristics which
can be easily adapted under different assumptions. In later work,
we investigate the use of a special purpose genetic algorithm to
solve a more difficult problem (see Section 7).

The rest of the paper is organized as follows. Section 2 provides
an overview of the assortment problem description and motivates
the need for a metaheuristic approach. Results that will be useful
in forming our metaheuristic approach are described in Section 3.
Section 4 describes the metaheuristic techniques used. The design
of the computational experiments and results are provided in
Sections 5 and 6. Lastly, our conclusions are presented in Section 7.

2. Overview to the assortment problem

In this section we will describe the particulars of the
assortment problem. We attempt to make the description as
succinct as possible as these problems have been described by
others, e.g. Gaur et al. [2], Mayorga [8,7], and Mayorga et al. [9].
While the definitions and terms used are conventionally found in
the literature, the notation introduced is specific to this paper.

Whether the firm operates in a make-to-stock or static
substitution environment it seeks to maximize expected profit
by choosing the assortment of products to offer. This decision
consists of the number of distinct products to sell n, and the
variety and quality attributes of each product j, denoted by (bj, y;),
respectively. It is assumed that b; € %t and each product is of one of
the two quality types, high or low, where

1 if high quality,
Yi= { 0 if low quality.

For example, in the case of yogurt, the horizontal attribute b;
could represent the fat content, while the quality attribute y;
could represent regular versus organic options.

Other parameters include the selling price p; and the purchase
cost ¢; for product j which depend on the quality level of the
product, y;; we assume p; and py are the prices for the low and
high quality products and ¢; and cy are the costs for the low and
high quality products. Furthermore, there is a fixed cost K of
adding a product to the assortment. All are exogenously
determined (with p; < py), thus we write p; and ¢; as

pj=A=yppL+)pH. ¢ =A=yj)cL+¥))Ch.

The distribution function of consumer preferences is denoted as
F(z), where ze Bc R. The utility that a consumer located at z
derives from purchasing product j with quality attribute y; and
variety attribute b; is given by

U(z, b;,yj) = u(yj)—pj;—tibj—=z|,

Here u(y;) represents the surplus obtained from purchasing a
product of quality level y; v>0 is the value of purchasing a
product and g > O represents a quality premium, or additional
value obtained from purchasing a high quality product. The last
term, t|bj—z|, represents the disutility of a customer located at z
when she purchases a product located at b;, where t > 0 can be
interpreted as a travel cost for purchasing a product at a non-
preferred location.

Coverage distance, I;: This is the maximum distance that a
consumer can be apart from a product j and still obtain a positive
utility from the product. The coverage distance is defined as
li=A-ypli+plu: V;pL » = V+q;pH .

Notice that if p;= py and g=0 then the products are identical.

First choice interval, [bj", bj’]: This interval contains the
locations of all consumers who choose product j as a first choice,
and is given by

where u(0)=v and u(1)=v+q.

where [, =

by = max{bj—lj, (Dj—u))—(Pj-1 _;lt(yj—l))+bjt+bj—1t}>
by :min{bjﬂj’(pj+1—U(VJH))—UJ;U(YJ))-Fbjf-i-ijf}, M

for j=1,...,n, bp = —co and b, ;1 = + 0.

First choice probability, d; (b,y): This is the probability that a
randomly selected consumer chooses product j from assortment
(b,y) (i.e., a randomly selected consumer belongs to the first-
choice interval of product j), and is given by

b+
dj(b,y) = b; f(@ydz=F(b;")~F(b;). ()

Assuming that consumer arrivals occur according to a poisson
process with rate Z, Dj(b,y) is a Poisson random variable, denoting
the demand for (number of customers who choose) product j as a
first choice, with mean Ad;(b,y). The expected total profit I1(b,y)
is the sum of the profits from each product, I1;(b,y). Thus, the
assortment design problem for both the make-to-order and static
substitution models is formulated as

n
Problem P) ma II;(b,y)—n(b,y)K
( ) (n)(b,})’()} j; j( y) ( y)

st. di(b,y),b; (b,y), ijr (b, y) satisfy (2) and (1).

The exact profit function II; differs depending on the problem
setting. In the make-to-order case, it is a linear function of the first
choice probability, dj(b, y), whereas in the make-to-stock with
static substitution case, it has been shown to be an increasing
convex function of the first choice probability.
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2.1. Motivation for further analysis: instances where the optimal
solution is unknown

The optimal solution to problem [P has not been found
analytically for all possible problem instances. For some cases,
the optimal solution is known or has at least been partially
characterized [9]. For example, it has been shown that if we know
the number of products (n) and their quality levels (y), then the
optimal variety attributes of these products (b) can be found by
conducting a single variable line-search. Furthermore, conditions
exist which further simplify the solution; in particular, for some
problem instances it is optimal to only carry products of a single
quality level. In this case the optimal assortment is only a function
of the location of the first product, b;. Fig. 1 illustrates a set of
problem instances by varying two key parameters, the quality
premium (q) and the price premium (py—p;) while fixing all other
parameters. Observe that some problems, such as (b) lie in the
white region; this white region represents a set of problems for
which the optimal solution is unknown. On the other hand, point
(a) in Fig. 1 is in the gray region; the gray region is a set of
problems that satisfy conditions in [9] and are therefore solved
analytically. The goal of this research is to close the gap and
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Fig. 1. Illustration of solved and unsolved problems instances for the make-to-
order model when K=1, v=2, ¢;=cy4=0.5, p;=1.25, t=4, A =5, F(z) ~ U[0, 1].
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provide at least an approximate solution to any problem instance
in the entire region using a metaheuristic approach.

When the distribution of customers is uniform, F(z) ~ U[0, 1],
the problem can be solved to optimality. Mayorga et al. [10]
have shown two ways to find the optimal attributes of mixed
quality assortments when products are differentiated both
horizontally and vertically. In the make-to-order case, they use
a variant of the knapsack, while the static substitution case is
solved efficiently using full enumeration. While full enumera-
tion can also be used in the make-to-order case, the variant
knapsack formulation returns a solution in a fraction of the time
(1s versus 1 min).

This solution approach, however, cannot be used when the
distribution of consumers is unimodal. The inclusion of non-
uniform consumer preferences increases the complexity of the
problem; the ordering of products matters because the demand
for a product does not only depend on its first choice interval, but
also on its location. To understand this consider the following
example, as illustrated in Fig. 2. In panel (a) on the left, F is a
distribution of consumer preferences which is uniform on [0,1]; in
panel (b) on the right, F is a distribution of consumers which is
normal ~ N(0.5,0.1). Consider two products, one located at
b;=0.3 and the second located at b,=0.5 with equal coverage
distance [=1,=1,=0.1. Under F, both products would attain equal
first choice probabilities, in particular dy=d,=2[=0.2. On the other
hand under F, these two products’ first choice probabilities are
dependent on b, where &j :F(bj—l)—l:"(bjﬂ). In this case,
d,=0.157, d, =0.683. We see that even if only two products
should be selected, their optimal locations are not immediately
obvious. In the case of n distinct products, we have n! possible
orderings. While previous results indicate continuous coverage
(which implies that given b; we know b, through b,,), we are still
left with the challenge of locating the first product for each of the
n! possible orderings.

3. Results to be used in the design of a metaheuristic
approach

This section utilizes previous results from [9] regarding
problem P in order to create bounds on the decision variables
which can be used to design more efficient metaheuristic
methods. Recall, our goal is to solve problem [P, where the exact
form of the profit function depends on the substitution behavior.
The profit from product j, II; is characterized as

I e {I1})" I3},
1} (d;(b,y). y)) = (0j—c)) d;(b, ).

a F~U[0,1] b F~ N(0.5,0.1)
45 4.5
4 A 4
35 A 35
3 A 3 4
. 251 —~ 25 1
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Fig. 2. Illustration of resulting first choice probabilities for two different consumer preference distributions. (a) F ~ U[0, 1]; (b) F ~ N(0.5,0.1).
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IT(d;(b,y), ) = (pj—¢;)Ad;(b,y)—p;d(z))\/ Ad;(b. y),

where z; = (15‘1((pj—(:j)/pj), ¢ and @ represent the standard normal
probability density function (PDF) and cumulative distribution
function (CDF), respectively. For further detail on how the profit
function is derived see [9]. In the make-to-order case (denoted by
M), consumers do not substitute while in the case of static
substitution (denoted by S), consumers choose not to buy if their
most preferred product is not in stock.

In the make-to-order case the profit function is linear while in
the make-to-stock case it has been shown to be convex increasing
in d;. However, in either case, the profit for product j depends not
only on the location of product j but also on the location of all
other products. However, it is known [9] that in optimality the
location of products can be restricted in two ways:

(i) bj —by =21, (i) b;" =bj, ,

These restrictions imply that products do not overlap and there is
no gap between them on the variety attribute space. Therefore,
we can rewrite P such that each product’s profit is in fact
independent of the other:

n
(Problem P) {'E?IS%,J; (d;j(b;, y)), y;)—n(b,y)K

s.t. dj(bj,yj)=F(bj+lj)—F(bj—lj)
bj:bj,] +lj,1 —I—l', j:Z,...,Tl—].

Even with these simplifications, we see that P remains a non-linear
optimization problem with unknown set of variables since n is not
known. In particular, to solve the problem we still need
to find n, the number of products in the assortment; y, the
quality levels of products 1-n; and b,, the location of the first
product. Then b,-b, can be found using the second constraint. Next
we briefly describe how the solution space can be reduced by finding
bounds on by, n, and the location of high and low quality products.

When the quality premium exceeds the price premium: In this
case q > (py—pr), which results in a longer coverage distance from
the more profitable product (Iy>1;). In such a case the high
quality product is said to “cannibalize” the low quality product
such that the optimal assortment contains only high quality
products [9]. This condition is illustrated in Fig. 1, as the gray area
above the diagonal. Recall that in this case the problem can be
solved using a single variable line search. While stricter condi-
tions exist (the gray areas below the diagonal in Fig. 1), they may
be difficult to find (in the case of unimodal distribution, they can
only be found computationally). Therefore, we restrict our efforts to
the set of problems where the high quality products do not
cannibalize (I >ly). This means that the optimal assortment
may contain multiple quality levels.

Bounds on product location: Products should only be located so
that they attain enough profit to cover the fixed cost, that is
b > min{b : I1;(b,y) = K}. This depends on the quality level of
product 1, which is an unknown variable. Thus, the bounds on the
location of products of type y € {0, 1} are given by

b ., =min{b : II;(dj(b,y),y) > K},

b).x = max(b : IT;(d;j(b,y),y) > K}.

It is useful to develop an absolute minimum location, beyond which
no product can be located. We will call this location b,;;, and it
represents the first variety attribute (location) where we may place
a product that will return non-negative expected profit. Similarly,
we can develop an absolute maximum location, b;,., representing
the last location where we can place a product that will return non-
negative expected profit. These bounds are defined as

bmin = min{bo b}nin}’

0o bmax = max{b%,, b} .}.

max>

b b b

min  ~min max  ~’max min min ‘max max

Fig. 3. Product location bounds and profitability crossover points.

Bound on the number of products (N;, Ny): Using the bounds on
product location, we can develop upper bounds on the number of
products of each type. Given the coverage distance of products of
each quality level, and the minimum and maximum locations, we
define N; and Ny to be the upper bound on the number of low and
high quality products where

Nom [ and = [Pl

These bounds could be made tighter by letting the b,qx and by,
depend on the quality levels. However, this adds complexity to the
problem without gain in efficiency to the metaheuristic methods
used.

Low and high quality regions: Recall that when Iy > [}, the high
quality product cannibalizes, thereby reducing the problem to a
single variable line search. As described previously, we only
consider case where [ > Iy. In this case the region over which high
quality products are profitable is smaller than the region over
which low quality products are profitable, since the high quality
products have smaller coverage distance and therefore smaller
resulting demand. There exist (at least) two locations in each
distribution where the more profitable product will switch from
low to high (or vice versa). We define these two locations, Bm,-n
and Bmax below

bumin = min{b : I1;(d;(b, 0),0) = I1;(d;(b, 1), 1)},
bimax =max{b : I1j(d(b, 0),0) = IT;(d;(b, 1), 1)}.
It is also of use to define d and d as densities given by

d = [F(bmax)—F(bpin)l,  d = [FDmax)—F(Bmin))-

Fig. 3 illustrates an example of these densities and locations.

Regardless of the exact form of the profit function I1;, problem
P is unique in that it involves several complicating factors: (1)
dynamic size, since the number of products to be included is
unknown; (2) it is combinatorial problem, in that for a given set of
n products we do not know the ordering (which are high quality,
which are low quality); (3) continuous variables, in that the exact
location of the first product is unknown. Thus, without further
assumptions, this problem becomes analytically intractable or too
computationally intensive to solve to optimality when F is
unimodal. Therefore, we turn to a metaheuristic approach as a
way to approximate the optimal solution.

4. Metaheuristics

With the unimodal case presenting a difficult problem to solve
optimally, we employ a series of metaheuristic techniques to
provide high quality solutions in a relatively small amount of
time. Three methods are investigated: a genetic algorithm (GA),
simulated annealing (SA), and a tabu search (TS). The goal of this
exercise is not only to provide an efficient method of generating
solutions to this class of problems, but also to study the
effectiveness of each of these techniques for solving these types
of problems. We begin by describing the implementation and
design decisions for the study and for each of the metaheuristics.
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4.1. Common elements

The metaheuristic approaches share several common ele-
ments. These include the solution representation, the fitness
function, and the upper bound on profit.

Solution representation: The solution representation is illu-
strated in Fig. 4. Each representation consists of Ny+N; elements
and a real number. The real number on [0,1], known as the offset,
is used to compute by =b,,;,*offset.

The remaining Ny+N; elements each represent a potential
product in the solution, with the total number of elements equal
to the sum of the upper bound on low quality products in the
assortment, N;, and the upper bound on high quality products in
the assortment, Ny. Each element designates a product as high or
low quality and contains a random number on the interval (0,1)
which serves as a random key for sorting purposes. Random keys
have been used frequently and were first proposed by Bean in
1994 [1]. We discuss the decoding of the representation in the
following, as it is inherently related to computing the objective
function.

Objective value: In this research, our goal to maximize expected
profit. Each solution is decoded by a function which calculates the
expected profit for the given solution, as follows:

1. The Ny+N; elements are sorted by the random key field (from
smallest to largest).

2. Current Location=(bmin+offset-Ij1}) and Count=0.

3. For i=1 to Ny+N;y:

(a) Consider the [i]th sorted element.

(b) Determine the quality level of the product and calculate
ITj;, the expected profit for the product at Current
Location+1};;.

(c) If IT;; > K the product is added to the assortment and the
total expected profit is updated. bcoyne=Current Location+
Iii, Current Location=Current Location+2l;, and Count=
Count+1

(d) Else, If Count=0, then: Current Location=Current Loca-
tion+21[,~].

Upper bound: As an optimal solution is not available in the
general unimodal case, we employ the use of an upper bound on
expected profit for solution quality evaluation. To compute the
upper bound, we divide the customer preference region into up to

Offset Product Quality
— * \

Unsorted | 0.234 | H L| | H| H L
0.423[0.972(0.128/0.575/0.756| 0.352

/
Random Keys

Sorted 0.234 L L H H H L

0.128(0.352| 0.423|0.575| 0.756| 0.972

Decoded

Offset

Fig. 4. Sample solution representation.

two areas: an area in which high quality products will be more
profitable, and an area in which only low quality products will be
profitable. We can then derive an upper bound on expected profit
for each region and the sum will provide the upper bound for our
problem. For each region, we assume that the entire density can
be captured by placing products, so the gross revenue is equal to
the density multiplied by the profit margin for the respective
item. We pay the fixed cost for each product that may be placed in
that region. Because this method allows for partial products that
will only require a fraction of the fixed cost, the bound will not be
tight to the optimal solution. The bounds will depend on the
problem instance. Consider the following three cases:

Case unmixed 1: bpin=bLn. This implies that a high quality
product is more profitable than a low quality product at the same
location, anywhere in the feasible location region. Thus the
optimal assortment will consist of only high quality products. An
upper bound on profit is given as follows:

_ 3 bmax—bmin
UBy =1I1;(d, 1)— {TJ K.
Case unmixed 2: byin= b%:, and Bmm < byin. In this case the optimal
assortment will consist of only low quality products. An upper
bound is given by

UB, = IT;(d, 0)— V’ma"zi_llb"ﬂ K.

Case mixed: otherwise. In this case the optimal assortment may
contain both high and low quality products, but high quality
products are only profitable in the region bounded by (B min> Pmax).
Thus the bound is given by

UB; = IT(d, 1)~ V’"”‘z;b”‘mJ K+ITj((d—d),0)

Bmin_Bmin bmwc—Bmax
([ = e

4.2. Genetic algorithms

Genetic algorithms (GA) are population based, evolutionary
metaheuristics, whose use for combinatorial problems is de-
scribed in Goldberg [4]. A population consists of chromosomes,
each of which maps to a point in the solution space. We use the
solution representation discussed in Section 4.1 as our chromo-
some. Once an initial population is established, future generations
are produced through the use of these operators:

e Elite reproduction: Chromosomes may be passed untouched
to the next generation through the use of elite reproduction.
Typically, the “most fit” chromosomes (as judged by a fitness
function) will be passed on, with the number determined
by the implementation. In elite reproduction, the best X% of
the current generation is copied, unaltered, to the next
generation. The fixed percentage X is often set at 20%, as in
Bean [1].

e Descendants: Descendant chromosomes are produced through
the “mating” of two parent chromosomes. Our implementa-
tion uses a single point crossover operator to produce
descendants. Single point crossover produces two offspring
from two parents. One descendant will contain the genetic
information from one parent up to a crossover point and the
genetic information from the other parent after the crossover
point. The second descendant will contain the complementary
genetic information from each of the parents. Both offspring
are retained for the future generation. The crossover operation
is illustrated in Fig. 5.
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| 0234 | L L | H H H L
0.128 [ 0.352] 0.423 | 0.575 [ 0.756 | 0.972

lotes [ v [ L ] L | Hn] L]t Parents
0.576 [ 0.923] 0.112 | 0.199 | 0.852 0.069
| 0234 | L L | L H | L L
0.128 | 0.352 | 0.112 | 0.199 | 0.852| 0.069
Offspring

| o168 | H L | H H H L
0576 | 0.923 | 0.423| 0575 0.756 | 0.972

—Crossover Point

Fig. 5. Illustration of the crossover operator.

e Immigration: Immigration is the process of introducing entirely
new chromosomes to the population. In our case, these
chromosomes are generated randomly.

The genetic algorithm contains a population of 100, which is
initialized with a random starting population. Following popula-
tions are built using 20% elite reproduction, 70% descendants, and
10% immigration. Parents are chosen randomly from the entire
previous population and reproduction is performed with a single
point crossover with a random crossover point. One thousand
generations are evaluated. All parameters were chosen empiri-
cally based on a subset of initial test cases. For example, to enable
a fair comparison between methods, we needed to establish a
fixed number of solution evaluations over all three methods. To
establish this limit we found the number of solutions needed to
converge over a subset of test cases for all three methods and
increased this number by some factor to err on the side of caution.

4.3. Simulated annealing

Simulated annealing (SA) is a path based metaheuristic first
applied to optimization by Kirkpatrick in 1983 [5]. The method is
intended to approximate the natural process in which metal is
annealed, and employs the Metropolis algorithm. The metaheur-
istic begins with an initial solution and a “temperature” value.
New solutions are generated by performing a small modification
to the previous solution. New solutions that show an improve-
ment in objective value are always accepted, and solutions which
produce a inferior objective value are accepted with probability
e2¢/T where Ae is the change in objective value and T is the
current temperature of the system. The temperature is lowered
once “stability” is reached at a temperature level (determined
empirically) and the algorithm is finished after the solution
becomes stable over multiple temperature levels. The cooling
scheme used to lower the temperature is geometric, with the
updated temperature set to 90% of the current temperature.

The simulated annealing process begins with a random
starting solution. The initial temperature is set according to the
characteristics of the individual problem instance. New solutions
are generated by either randomly modifying the offset (10%
probability) or changing the quality level of a randomly selected
product (90% probability). The offset modification is performed by
generating a (—1,1) random number which is multiplied by ¢ (the
standard deviation of customer preference) and added to the
previous offset. For comparison purposes to the other methods, a
limit of 100,000 solutions was enforced.

4.4. Tabu search

Tabu search (TS) was proposed and applied to optimization
problems by Glover in 1986 [3]. Like simulated annealing, tabu
search is a path based metaheuristic. An initial solution is
generated, as well as a list of “neighbor” solutions. Neighbor
solutions are defined as a group of solutions that border the
original solution and usually involve a single perturbation of the
original solution. A tabu list is established, which is a listing of
recently visited solutions (the length of the list is determined by
the implementer). For each “move” in the algorithm, the tabu
search generates the list of neighbor solutions and moves to the
neighbor with the most desirable objective value that is not
present on the tabu list.

The tabu search begins with a random starting solution. The
tabu list consists of 10 elements, and any solution with the same
objective function is considered identical. In other words, our tabu
list consists of a set of objective values rather than a set of
solutions. We do this for two reasons. First, because of the
representation many solutions could yield the same objective
function; second, our solution representation contains a contin-
uous variable so that it is unlikely that the exact same solution be
visited again; thus, a tabu list consisting of full solution
representations would be very inefficient. The search consists of
10,000 updates, with Ny+N;+1 neighbors generated by ran-
domly modifying the offset and changing the quality level of each
product individually. The offset modification is performed by
generating a (—1,1) random number which is multiplied by ¢ and
added to the previous offset. Both tabu search and simulated
annealing use the same perturbations. Simulated annealing
allows only one solution to be considered per move, and tabu
search considers the entire neighborhood of solutions and selects
the best non-tabu move.

5. Computational experiments

The three methods were each evaluated computationally over
a series of 656 test cases. The cases are divided into three p;
values, which each contain two K values, and then a range of py
and g values are presented which result in Il values of interest
(recall we are interested in cases such that Iy <I;), all other
parameters are fixed. For example, for p;=1.5, parameters are
such that [;=0.25; thus, we vary py and q such that py—p; <gq,
resulting in Iy < 0.25. A detailed list of test cases is available at
http://people.clemson.edu/~ mayorga/papers/CORdata.pdf. An upper
bound for each case was computed off-line. Each method was
implemented in G+ and compiled with Microsoft Visual Studio 2008.
Fifty replications of each test case were evaluated using Condor, a high
throughput grid computing solution. The Mersenne Twister pseudo-
random number generator was used and each replication of each run
used a pre-generated seed that ensured no overlapping of random
number streams. Results were computed by measuring deviation
from the bound for each replication, and averaging the results for
each case over the 50 replications. Computational time for a single
case on a P4 3.20 GHz PC with 2 GB of RAM was < 1s.

6. Results

The aggregated results are presented in Table 1. Bold entries
show the best value in each row. Each row represents a single test
case or an aggregation of a class of test cases. These results show
similar performance by the GA and TS, and both are well ahead of
SA. Each method shows low variance (in the order of 10~°) and as
a result we are satisfied with the convergence of each method.


http://people.clemson.edu/~mayorga/papers/CORdata.pdf
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Table 1
Aggregated results.

% Deviation from bound [Avg (Min, Max)]

GA TS SA
All 2.590% (0.018%, 26.070%) 2.629% (0.022%, 26.616%) 3.487% (0.135%, 26.160%)
Mixed 3.471% (0.018%, 26.070%) 3.510% (0.022%, 26.616%) 4.667% (0.197%, 26.160%)
Unmixed 1.099% (0.059%, 4.456%) 1.040% (0.043%, 4.280%) 1.357% (0.135%, 4.694%)
Table 2

Case results.

TS

SA

1.962% (0.367%, 15.825%)
2.485% (0.758%, 15.825%)
0.519% (0.367%, 0.716%)
9.426% (2.214%, 26.615%)
13.417% (5.433%, 26.615%)
3.529% (2.214%, 4.280%)

0.483% (0.088%, 2.514%)
0.691% (0.337%, 2.514%)
0.187% (0.088%, 0.321%)
2.843% (0.504%, 25.820%)
4.350% (1.552%, 25.820%)
0.997% (0.504%, 1.736%)

0.168% (0.021%, 0.327%)
0.208% (0.021%, 0.327%)
0.071% (0.042%, 0.099%)
0.929% (0.251%, 2.072%)
1.184% (0.588%, 2.072%)

P K Bound % Deviation from bound [Avg (Min, Max)]
GA
1.5 0.2 All 1.846% (0.364%, 14.829%)
Mixed 2.321% (0.522%, 14.829%)
Unmixed 0.535% (0.364%, 0.702%)
1.0 All 9.237% (2.498%, 26.070%)
Mixed 13.074% (5.074%, 26.070%)
Unmixed 3.570% (2.498%, 4.456%)
50 10 All 0.577% (0.170%, 7.622%)
Mixed 0.803% (0.295%, 7.622%)
Unmixed 0.255% (0.170%, 0.345%)
50 All 2.803% (0.599%, 25.061%)
Mixed 4.177% (1.714%, 25.061%)
Unmixed 1.121% (0.599%, 1.750%)
60 1 All 0.171% (0.018%, 0.327%)
Mixed 0.207% (0.018%, 0.327%)
Unmixed 0.084% (0.058%, 0.110%)
5 All 0.942% (0.298%, 2.020%)
Mixed 1.176% (0.554%, 2.020%)
Unmixed 0.441% (0.298%, 0.600%)

0.383% (0.251%, 0.569%)

2.774% (0.605%, 15.111%)
3.337% (1.017%, 15.111%)
1.221% (0.605%, 2.224%)
9.506% (2.503%, 26.160%)
13.380% (5.765%, 26.160%)
3.782% (2.503%, 4.694%)

2.451% (0.153%, 12.614%)
3.843% (0.694%, 12.614%)
0.472% (0.153%, 1.071%)
3.937% (0.619%, 25.189%)
6.122% (2.256%, 25.189%)
1.262% (0.619%, 1.877%)

0.885% (0.134%, 3.301%)
1.103% (0.196%, 3.301%)
0.351% (0.134%, 0.990%)
1.407%(0.376%, 3.780%)
1.779% (0.763%, 3.780%)
0.611% (0.376%, 1.002%)

Subdividing the tests cases gives the results as presented in
Table 2. Here we can observe the relative strengths of both the GA
and the TS. The GA offers increased performance in mixed cases
(Cases 1 and 2) and generally in the class of problems that we
consider to be “hard” (the mixed cases are a member of this class).
Harder problems tend to occur in the situations where there is a
small price premium or quality premium between products. Hard
problems are also those in which the K value is relatively high
(problems in which it is more difficult to obtain positive profit
from each product). The TS method, by contrast, excels at
problems in which the resulting assortment is unmixed. These
are problems in which the assortment is relatively easy to find
and the difficulty is in finding the correct offset.

Box plots of the results are shown in Fig. 6. Inspection reveals
that these results are not normally distributed. Non-parametric
statistical testing confirms the observational results above. A
statistical ranking of the three methods is presented in Table 3.
Non-parametric techniques are used, as the results are skewed
towards the upper bound, thereby eliminating the normality
assumption. Friedman’s test revealed significant statistical
differences between the methods, and then a multiple
comparison test was used to rank the methods for each case.
We see that the results in Tables 2 and 3 are consistent.

7. Conclusions

Simulated annealing can be eliminated as an effective tool for
solving our problem cases. SA performed at an inferior level in
each of the cases tested, suggesting a poor fit for these problem
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Fig. 6. Boxplot of percent deviation from bound.

cases and for the multiple quality assortment problem in general.
We speculate that the performance of the SA suffers from only
considering a single solution at each iteration, but we have not
tested this specific assertion.

The genetic algorithm and tabu search perform better than
simulated annealing in general in these problems, as demon-
strated by our statistical analysis. Relative to the upper bound, GA
and TS can perform within 0.018% and 0.021%, respectively, on
some problems. While the GA performs slightly better, averaging
over all cases, statistical ranking shows that the difference is not
significant. On the other hand, the TS does out-perform the GA in
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Table 3
Statistical ranking.

DL K Bound GA TS SA
1.5 0.2 All 1 2 3
Mixed 1 2 3
Unmixed 1 1 3
1.0 All 1 2 2
Mixed 1 2 2
Unmixed 1 1 3
50 10 All 2 1 3
Mixed 1 1 3
Unmixed 2 1 3
50 All 2 1 3
Mixed 1 1 3
Unmixed 2 1 3
60 1 All 1 1 3
Mixed 1 1 3
Unmixed 2 1 3
5 All 1 1 3
Mixed 1 1 3
Unmixed 2 1 3
Case
All 1 1 3
Mixed 1 2 3
Unmixed 2 1 3

more case-by-case comparisons. Therefore, without pre-classify-
ing the problem (to know if the assortment will be mixed or
unmixed), both GA and TS methods are recommended for solving
the assortment planning problem.

Previous work with these problems [9] has suggested that they
may be pre-classified by instance type and then solved. For
example, as shown in Fig. 1, problems in the gray region will
contain a single quality type (unmixed case), while problems in
the white region may contain multiple quality types (mixed case).
The unmixed case can be solved using several single variable line
searches.

For mixed problem instances, the genetic algorithm is the
preferred method for solving assortment problems. The GA offers
increased performance for these “hard” problems. On the other
hand, for the unmixed cases, the TS method was the dominant
method. This advantage seems to stem from the TS method’s
ability to modulate an existing offset, as opposed to generating
entirely new random offsets, as the GA does. Also, TS considers
changing the quality level of any product and only changes the
offset when it will provide the largest gain in the objective value.
It seems reasonable to suggest that adding an offset mutation to
the GA method would allow for better performance against the TS
in these cases.

The computational work necessary to pre-classify problems (as
mixed or unmixed) is non-trivial. Fortunately, the use of these
metaheuristic methods to solve assortment problems eliminates
the need to pre-classify the problems. Thus, an interesting side
effect of our work shows that since these methods work so
quickly over all problem types, there is no need to pre-classify

problems when the only end goal is to find a solution to the
problem. In this case both GA and TS methods are highly
competitive.

Additionally, it is worth making a note on the quality of the
bounds used in this evaluation. The bounds, by nature, will
underpay the fixed cost of the generated assortment. As such, the
gap between the optimal solution and the bound on profit grows
greatly with K, and becomes even larger as the marginal-profit-to-
fixed-cost-ratio grows. This relationship is illustrated in our
results and should be considered more of a statement on the
quality of the bound than a statement on the quality of the results.
However, no tighter bound is known at this time for these cases.

We have shown that metaheuristic techniques can be
efficiently and effectively used to approximate solutions to
difficult to solve assortment planning problems. Thus researchers
may look to such methods as more pragmatic retail models are
developed. One possible extension is generalizing the assumption
of consumer preferences beyond the unimodal distribution. For
example, if consumer preferences are bi-modal the optimal
assortment may contain overlapping products, thus the location
of each product needs to be determined and the solution
representation would have to be altered accordingly. Another
possible extension is to consider the dynamic substitution
environment, where consumers will attempt to substitute for
their most preferred product if it is out of stock. In this case the
assortment and inventory problem do not decouple, making the
problem analytically intractable. Not only is a new solution
representation necessary, but also a more complex objective
function.

Having established the viability of metaheuristics as a solution
approach, we are currently working on developing a special
purpose genetic algorithm to solve assortment problems in which
the products may have overlapping coverage. This occurs when
consumer preference for quality is non-homogeneous. In this
case, since properties of the optimal assortment are difficult to
characterize, our goal is to use the GA to generate solutions which
will give us insights as to the structure of the optimal policy.
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