
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Multi-objective analysis of an integrated supply
chain scheduling problem

Eray Cakici , Scott J. Mason & Mary E. Kurz

To cite this article: Eray Cakici , Scott J. Mason & Mary E. Kurz (2012) Multi-objective analysis
of an integrated supply chain scheduling problem, International Journal of Production Research,
50:10, 2624-2638, DOI: 10.1080/00207543.2011.578162

To link to this article:  https://doi.org/10.1080/00207543.2011.578162

Published online: 08 Jul 2011.

Submit your article to this journal 

Article views: 617

View related articles 

Citing articles: 28 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/loi/tprs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2011.578162
https://doi.org/10.1080/00207543.2011.578162
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2011.578162
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2011.578162
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2011.578162#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2011.578162#tabModule


International Journal of Production Research
Vol. 50, No. 10, 15 May 2012, 2624–2638

Multi-objective analysis of an integrated supply chain scheduling problem

Eray Cakicia*, Scott J. Masonb and Mary E. Kurzb

aIBM, Yapi Kredi Plaza, Levent, Istanbul 34330, Turkey; bDepartment of Industrial Engineering,
Clemson University, 110 Freeman Hall, Clemson, SC 29634, USA

(Received 29 August 2010; final version received 25 March 2011)

We study the problem of minimising the total weighted tardiness and total distribution costs in an integrated
production and distribution environment. Orders are received by a manufacturer, processed on a single
production line, and delivered to customers by capacitated vehicles. Each order (job) is associated with
a customer, weight (priority), processing time, due time, and size (volume or storage space required in the
transportation unit). A mathematical model is presented in which a number of weighted linear combinations
of the objectives are used to aggregate both objectives into a single objective. Because even the single
objective problem is NP-hard, different heuristics based on a genetic algorithm (GA) are developed to further
approximate a Pareto-optimal set of solutions for our multi-objective problem.

Keywords: supply chain management; heuristics; multi-criteria decision making; genetic algorithms; math
programming

1. Introduction

Problems with two or more objectives are common in real-world applications and are called ‘multi-objective’
or ‘multi-criteria’ optimisation problems. Scheduling problems often require multiple objective analyses. Many
problems faced by decision makers involve making a selection from different alternative solutions while satisfying
several criteria that are usually in conflict with each other (for example, the cost and service level). Industries – such
as aircraft, electronics, semiconductor manufacturing, etc. – have trade-offs in their scheduling problems in which
multiple objectives are considered in the process of optimising the overall performance of the system (Cochran et al.
2003). A schedule minimising one objective can lead to a poorly satisfied objective elsewhere. Therefore, any
methodology applied in such multi-objective scheduling problems has to find a compromise between these
conflicting objectives. The aim is to achieve a ‘best-compromise’ solution of all of the objectives. Generally, no such
single solution exists, and the decision maker’s preference affects the selection of the best compromise among the
set of efficient solutions. Such solutions are also called Pareto-optimal solutions; for those non-dominated solutions,
no feasible solution exists that can better satisfy one objective without negatively affecting at least one other
criterion. Therefore, many multi-objective methods try to reduce the solution space to the set of efficient solutions
(Jaszkiewicz 2002). Special algorithms should be used in order to generate several non-dominated solutions. This
is the fundamental difference between a single-objective and multi-objective optimisation problem (Deb 2001).

Costs and service levels are two main objectives of interest in a typical supply chain. Both objectives can be better
optimised by collaborative decision-making models. Lack of integration between production and distribution
schedules yields substantial inefficiencies and, consequently, poor total system performance. Especially in make-
to-order industries, lead times are short and limited inventory is held in the supply chain. Therefore, coordinating
production and distribution operations becomes more crucial for satisfying on-time delivery requirements without
intermediate storage. In such a situation, delivery times to meet service considerations and consolidation
opportunities to reduce transportation costs are highly affected by production schedules. Motivated by the fact
that an increasing number of companies are now adopting make-to-order business models, we study the problem
of optimising customer service levels and total distribution costs in an integrated production and distribution
environment. Because, generally, there is very little or no inventory and production costs are typically independent
of the processing sequence, transportation costs are the main driver for minimising total system cost. Customer
service levels are measured by weighted tardiness, where tardiness is the positive difference between a job’s delivery
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time and due time. Orders are received by a manufacturer, processed on a single production line, and delivered
directly to customers by capacitated vehicles without visiting any other locations. Customers are positioned in
different locations of the network and a fixed customer-dependent transportation cost is incurred for each delivery.
Every order (job) is associated with a customer, weight (priority), processing time, due time, and size (volume
or storage space required in the transportation unit). A mathematical model is presented in which weighted linear
combinations of the objectives are used to aggregate objectives into a single objective. By changing the weights
of objective functions, different solutions can be achieved through the proposed mathematical model. For example,
suppose T and C are two objectives of interest. Then, a single objective of the problem to be solved via mathematical
programming is �Tþ ð1� �ÞC, where � is a constant value (weight). Because even the single objective problem
is NP-hard, several genetic algorithm-based approaches are developed to further approximate a Pareto-optimal set
of solutions without aggregating objectives for this multi-objective problem.

The rest of the paper is organised as follows. In the next section, we review the previous work on multi-objective
supply chain scheduling. In Section 3, we present a mixed-integer programming formulation of the problem under
study. Section 4 describes different heuristic algorithms to further approximate the Pareto-optimal set of solutions.
Section 5 presents the results of computational experiments conducted to evaluate the performance of the proposed
algorithms. We conclude the paper with a summary and suggestions for future research directions in Section 6.

2. Literature review

A recent review of the integrated production and distribution scheduling models in the literature can be found
in Chen (2010). The objective functions studied in the supply chain scheduling literature are summarised in Table 1.

In this paper, optimising the trade-off between total weighted tardiness and transportation costs is studied.
Relatively few papers exist in the literature studying integrated decisions at a detailed scheduling level in which
multiple objectives involve tardiness and transportation costs. Synchronisation of assembly operations with air
transportation is investigated by Li et al. (2005) for a make-to-order-based computer manufacturer. The objective
is to minimise the overall total cost including the total delivery tardiness cost. The problem is divided into two
sub-problems. The air transportation allocation is formulated and solved as an integer linear program, and
two heuristic approaches are presented for the assembly-scheduling problem. Pundoor and Chen (2005) study
minimising the total distribution costs plus maximum tardiness. A set of orders with equal sizes is received at the
beginning of the planning horizon, processed by the supplier, and delivered to the customers by capacitated vehicles.
Both single and multiple customer cases are studied along with a special case. Either an efficient algorithm or proof
of intractability is proposed for different cases of the problem. A heuristic approach incorporating a dynamic
programming algorithm is developed for the general case. The authors show that an integrated approach yields
significantly better results when compared with a sequential approach in which scheduling decisions are first made
for order processing then followed by delivery scheduling decisions. In our study, we assume order sizes are unequal,
which is more difficult to solve than problems with equal sizes (Chen 2010). The batching problem in the
distribution part involves bin packing, and that problem itself is strongly NP-hard (Garey and Johnson 1979).
Hall and Potts (2005) consider different integrated production and distribution problems. The objective is to
minimise the sum of total transportation costs and total scheduling cost. A variant of scheduling costs is considered
involving total weighted completion time, the maximum lateness, total weighted number of late jobs, and the total
tardiness. The production side is modelled as either a single or parallel machine environment. A fixed transportation
cost is incurred for each delivery and it is assumed that vehicles have an infinite capacity. The authors present
several algorithms and intractability results. Chen and Hall (2007) examine various supply chain configurations in
which suppliers provide parts to a manufacturer. Conflict issues are discussed when each party has its own objective,
such as minimising total completion times for suppliers and minimising maximum lateness for the manufacturer.
Cooperation opportunities and ways to resolve conflicts are also shown under various assumptions of the relative
bargaining powers of the suppliers and the manufacturer.

In summary, generally the objective function examining the trade-off between the tardiness-related objective
and transportation cost is defined as �Tþ ð1� �ÞC, where T can be the total weighted tardiness and C is the total
distribution cost. It can be seen that when � is close to 0, more emphasis is given to the total distribution cost and
when � is close to 1, more emphasis is given to total weighted tardiness. This � value can also be used to normalise
the total weighted tardiness and total distribution cost representations, since the objectives are represented
by different units (i.e., ‘dollars’ for the total distribution cost and ‘minutes’ for tardiness). Another approach often
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suggested is to minimise one of the criteria as the objective with an additional constraint so that the second
constraint is limited by a specified value. In this case, dual variables can be used to evaluate the change in the
objective value due to a unit increase on the constraint’s right-hand side. To our knowledge, there is no previous
research in the supply chain scheduling literature applying multi-objective analysis to tackle this problem in which
a set of non-dominated solutions are generated instead of a single solution.

3. Mathematical formulation

3.1 Problem description

The problem considered in this study consists of scheduling n orders in an integrated production and distribution
system. There exist an infinite number of vehicles, which is a valid assumption for many companies where
transportation is outsourced and a fixed transportation cost incurs for each delivery. The objective is to optimise the
trade-off between total weighted tardiness and total distribution costs. Orders are received by a manufacturer,
processed on a single production line, and delivered to customers by capacitated vehicles. Each order (job)
is associated with a customer, weight (priority), processing time, due time, and size (volume or storage space
required in the transportation unit). The vehicle capacity is defined as the maximum total size of the jobs that can be
delivered together. Only direct deliveries without any intermediate stops are allowed (one customer per trip) as in
the case of the full truckload industry. Transportation times are also considered in addition to the processing times.
It is assumed that all jobs are available at the beginning of the planning horizon and no preemption is allowed.

Table 1. Objective functions studied in the supply chain scheduling literature.

Objective Reference

Total flow timeþ total distribution cost Hall and Potts (2003)
Maximum latenessþ total distribution cost
Number of late jobsþ total distribution cost
Total weighted flow timeþ total distribution cost Ji et al. (2007)
Inventory holding costþ total distribution cost Selvarajah and Steiner (2006)
Total flow timeþ total distribution cost Averbakh and Zhihui (2007)
Makespan Zhong et al. (2007)
Total flow timeþ total distribution cost Mazdeh et al. (2007)
Makespan Wang and Cheng (2007)
Total flow timeþ setup costs Qi (2005)
Total setup cost Cheng (2001)
Total completion time Lee and Chen (2001)
Makespan
Inventory holding costþ total distribution cost Anily and Tzur (2005)
Mean delivery timeþ total distribution cost Chen and Vairaktarakis (2005)
Maximum delivery timeþ total distribution cost
Total delivery timeþ total distribution cost Chen and Lee (2008)
Makespanþ lateness Dawande et al. (2006)
Makespanþ total inventory holding cost
Total tardinessþ total earlinessþ total distribution cost Li et al. (2005)
Total delivery time Li et al. (2005)
Total cost Lei et al. (2006)
Weighted sum of total delivery timeþ total cost Chen and Pundoor (2006)
Weighted sum of maximum delivery timeþ total cost
Total cost
Sum of completion timesþ total distribution cost Hall and Potts (2005)
Maximum tardinessþ total distribution cost
Total tardinessþ total distribution cost
Number of late jobsþ total distribution cost
Maximum tardinessþ total distribution cost Pundoor and Chen (2005)
Total flow timeþ total distribution cost Wang and Cheng (2000)
Maximum tardinessþ total completion times Chen and Hall (2007)
Makespan Geismar et al. (2008)
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3.2 The model

This problem is formulated as a mixed-integer programming (MIP) problem. First, the pertinent notation for

mathematical formulation is introduced:

J set of jobs such that J 2 f1, 2, . . . , ng
B set of vehicle trips such that B 2 f1, 2, . . . , ng

Each job is ordered by a specific customer and it has to be delivered directly to that customer. Every vehicle

trip is pre-assigned to a specific customer regardless of whether it is performed or not in the optimal solution. The

maximum number of trips for each customer is equal to the number of jobs ordered by that particular customer.

Therefore, there are a total of n trips introduced and only jobs of the associated customer can be assigned to

a particular trip (batch). Trips are numbered the same as the jobs of the corresponding customer. For example,

if a particular customer ordered jobs 3 and 5, then batches 3 and 5 are associated with that customer and can include

jobs 3 and 5. � denotes the set of job-to-trip pairs, where (i, k)2� indicates that job i and trip k are destined to same

customer. By this definition the problem size is reduced compared with the case introducing all job-to-trip

combinations. Instead, only feasible combinations are introduced because jobs of the same customer can only form

a delivery together. The vehicle has capacity � and �b is the time required to perform trip b 2 B. Each delivery incurs

a distribution cost, �b.
A dummy job 0 is introduced whose processing time, ready time, and weight are each set equal to 0. In the

network formulation of the machine scheduling problem, job 0 is required to be both the first and the last job

processed on each machine in order to indicate both the starting and finishing of job processing on each machine.

Binary decision variable xij is defined to assist with job sequencing such that xij¼ 1 if job i 2 J immediately precedes

job j 2 J; otherwise, xij¼ 0. In the distribution part, zb is introduced to track the delivery trips that are performed

such that zb ¼ 1 if trip b 2 B is performed; otherwise, zb ¼ 0. The time at which job j 2 J finishes its required

processing is denoted by Cj. Each trip b 2 B starts its delivery at Sb and the time job j 2 J is delivered is �j. In order

to handle both batch assignments and incompatible job families at the same time, binary decision variable yjk is

introduced, where yjk¼ 1 if job j 2 J is assigned to trip k 2 B where ð j, kÞ 2 �; otherwise, yjk¼ 0.
Job j 2 J has the following parameters associated with it:

wj the weight (priority) of job j 2 J
vj the size (volume) of job j 2 J
dj the due time of job j 2 J

The tardiness of job j 2 J, Tj, is calculated as maxð0,�j � dj Þ. The objective functions of interest are to minimise

the sum of the total weighted tardiness (TWT) of all jobs, in which TWT ¼
P

j:j2J wjTj, and to minimise the total

transportation cost (TC) of all deliveries, in which TC ¼
P

b:b2B zb�b. Jobs are assigned to a single production line

(machine) with a unique predecessor and a unique successor, subject to the machine starting and ending its schedule

with job 0: X
j2J:j6¼i

xji ¼ 1, 8i 2 J, ð1Þ

X
j2J:j 6¼i

xij ¼ 1, 8i 2 J: ð2Þ

In order to process job j immediately after job i, job i 2 J completes pj time units before job j 2 J:

Ci � Cj þ pj � ð1� xijÞM, 8i 2 J, 8j 2 J : j 6¼ 0, i 6¼ j: ð3Þ

Constraints (4)–(9) address the distribution part of the problem. Jobs are assigned to one of the available trips

that are associated with the same customer

Xn
k¼1

yjk ¼ 1, 8j 2 J : ð j, kÞ 2 �, ð4Þ

and the machine (vehicle) capacity cannot be exceeded:

Xn
j¼1

vjyjk � �, 8k 2 B : ð j, kÞ 2 �: ð5Þ
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A vehicle cannot start its delivery until all jobs to be delivered in the corresponding batch have finished their
processing:

Sb � Ci � ð1� yibÞM, 8i 2 J, 8b 2 B : i 6¼ 0, ði, bÞ 2 �: ð6Þ

�i is the delivery start time plus the delivery time:

�i � Sb þ �byib � ð1� yibÞM, 8i 2 J, 8b 2 B : i 6¼ 0, ði, bÞ 2 �: ð7Þ

In constraints (3), (6), and (7), M �
P

j2J pj. Each possible trip should be performed if any job is assigned to it:

nbzb �
Xn

i:ði,bÞ2�

yib, 8b 2 B, ð8Þ

where nb is the total number of jobs ordered by the customer that trip b is associated with. Finally, the tardiness of
the jobs is calculated using the following relationship:

Ti � �i � di, 8i 2 J: ð9Þ

In the model presented above, different weights are given to each objective function in order to produce diverse
efficient solutions. Subsequently, both objectives are aggregated into a single objective by summing up the weighted
objectives in which well-suited weights for different objectives are required to obtain useful non-dominated points
on the Pareto front.

3.3 Problem complexity

Considering the production stage alone by assuming transportation time and costs are equal to 0, our scheduling
problem can be described in the �j�j� notation of Graham et al. (1979) as 1j j

P
wjTj. This reduced problem

is NP-hard in the strong sense (Lawler 1977). Due to the greater complexity of our problem, heuristic approaches
are needed to produce good solutions. A mathematical model is used to assess the heuristic solution quality
for small-sized instances. In this study, different genetic algorithm-based approaches are developed to solve our
challenging, practically motivated multi-objective problem.

4. Heuristics

Genetic algorithms have been shown to be a promising technique by many researchers for solving multi-objective
optimisation problems (Arroyo and Armentona 2005). A GA is applied to the distribution part of our problem
in which an infinite number of capacitated vehicles exists and only direct deliveries (one customer per trip) are
allowed. We first describe our chromosomal decoding scheme, infeasibility evaluation methodology, crossover, and
mutation operations as follows.

Coding: To decode trip assignments, each job is associated with a random trip number where the maximum
number of delivery trips is equal to the number of jobs (see Figure 1 for an example representation).

The existence of capacity limitations and incompatibility (only jobs of the same customer can be delivered
together) lead to infeasible solutions while producing new chromosomes. Consider three customers with orders
J1, J2, J3, J4f g, J5, J6, J7, J8f g and J9, J10f g, respectively. In the above example, assignment of jobs 3 and 9 is infeasible
because they are assigned to the same trip but ordered by different customers. To overcome the infeasibility issues
caused by direct delivery restrictions (when jobs of different customers are randomly assigned to the same trip), trips
that are eligible to deliver the jobs of each customer are pre-defined as being similar to the proposed mathematical
model, and trip assignments are performed by randomly selecting a trip from the set of pre-determined trips of the
associated customer. For each customer, possible trips are pre-determined, one for each job ordered by that
customer, and none of the possible trips overlap between customers. For example, jobs of customer 1 can only be

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Trip 8 6 4 8 5 7 1 3 4 9

Figure 1. Example chromosome representation.
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assigned to a trip randomly chosen between 1 and 4, any trips numbered from 5 to 8 can deliver jobs to customer 2,
and jobs of customer 3 can only be assigned to either trip 9 or 10 (see Figure 2 for the modified example
representation).

Crossover: Two parent chromosomes and a crossover point are selected randomly. A one-point crossover is
applied with a probability of pc such that a random number is drawn from U(0,1) and crossover at a random point is
applied if the number is less than pc. Job assignments before the crossover point are copied from the first parent, and
the rest are copied from the second parent. If crossover is not applied to the parent chromosomes, they are copied
directly to the offspring. In both cases, two resulting chromosomes are obtained (Figure 3).

Mutation: From each chromosome of the offspring, a job is randomly selected and assigned to a random trip
(batch) of the associated customer according to a pre-defined mutation probability, pm (Figure 4).

Penalty Function: Feasibility is not guaranteed when a crossover or mutation is performed to produce the next
generations. Each infeasible solution is penalised by multiplying both objective values by an exponential function of
the number of infeasible trips (deliveries in which capacity is exceeded) to maintain feasibility in the next
generations. For example, if a particular solution i has a total weighted tardiness of TWTi and includes two
infeasible trips, then the updated total weighted tardiness is TWTi � e2.

Our two main goals in generating solutions for this multi-objective problem are: (1) superior convergence to the
Pareto-optimal front and (2) diversified non-dominated solutions. The fast and elitist Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) is used to obtain widely distributed Pareto-optimal solutions in an effective
manner. Deb et al. (2002) show that, in many problems, NSGA-II is able to perform better than other multi-
objective evolutionary algorithms with respect to fitness (quality) and spread (diversity) of the solutions. The
algorithm uses an explicit diversity-preserving mechanism and runs in OðMN2Þ time where M is the number of
objectives and N is the population size.

The algorithm starts with randomly generating N solutions as the initial population P0. Then, an offspring
population Q0 of size N is generated from the initial population by genetic operations such as crossover and
mutation. After generating the offspring population, P0 and Q0 are combined into mating pool R0. Each solution in
R0 is evaluated based on the non-dominated sorting scheme (Figure 5) and a crowding distance measure (Figure 6).
Solutions are first sorted in non-decreasing order of fronts and then non-increasing order of crowding distance. The
next generation P1 is created by adding the individuals from the sorted list until the size of P1 exceeds N. A non-
dominated sorting approach helps to classify individuals in a fast manner into different fronts based on their fitness.
N solutions are selected from the mating pool by transferring solutions of sorted fronts. When the population size N
is exceeded by transferring a particular front, selection is performed based on the crowding distance. The crowding

Customer 1 Customer 2 Customer 3

Parent 1 2 3 4 3 6 7 8 7 10 10

Parent 2 1 2 4 2 7 8 6 6 10 9

Child 1 2 3 4 3 6 8 6 6 10 9

Child 2 1 2 4 2 7 7 8 7 10 10

Figure 3. Example of crossover operation.

Customer 1 Customer 2 Customer 
Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Trip 2 3 4 3 6 7 8 7 10 10

Figure 2. Example chromosome modified representation.

Customer 1 Customer 2 Customer 3 
Parent 2 3 4 3 6 7 8 7 10 10
Child 2 1 4 3 6 7 8 7 10 10

Figure 4. Example of mutation operation.
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distance measure preserves the diversity when selecting solutions from the same front, and as non-dominated
individuals (lowest rank front) are selected every time to transfer individuals, elitism is also attained in the search.
The algorithm continues to generate offspring populations and update the next generations until the stopping
criterion is met. The stopping criteria can be defined by a limit on the total computational time or the total number
of generations. Figure 7 illustrates the implementation of NSGA-II in this paper.

To further improve the convergence to the Pareto-optimal front and diversify the solution space, we introduce
immigration, which is a simple move of solutions from one generation to the next generation without any changes
and propose two variants of NSGA (NSGA-II without immigration is NSGA-II-Type0). Instead of copying all N
sorted solutions, we add new randomly generated chromosomes to the next mating pool by immigration. In the
first variant, NSGA-II-Type1, a constant percentage of the next generation is created by immigration, where 10%
is chosen in this study. The second variant, NSGA-II-Type2, transfers only the solutions that are non-dominated
over all solutions in the mating pool (first front) to the next generation. The remaining solutions are generated
through immigration. A detailed example of a NSGA-II iteration is given in Appendix A.

Genetic algorithms used to form delivery trips are incorporated with dispatching rules to schedule jobs on the
production side. Given delivery trips of orders, there exists an optimal schedule to minimise the TWT in which
there is no idle time between the processing of orders at the manufacturer, and orders delivered together are also

Figure 6. Crowding distance.

Figure 7. Steps of NSGA-II.

1. For each individual solution i, identify the number of solutions that dominates i, ni, and create Si,

the set of solutions that i dominates such that solution i dominates solution j if i is better in both 

objectives. And set k = 1.
2. Each unplaced solution i with ni = 0 is placed in the kth front, Fk.

3. For each solution i in Fk, find each individual j that is dominated by i and reduce ni by one. 

4. If all solutions are placed in a front, stop. Otherwise, k ← k+1 and go to Step 2

Figure 5. Fast non-dominated sorting.
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processed consecutively (Pundoor and Chen 2005). Therefore, once the delivery trips (batches) are formed via the
genetic algorithm, the problem reduces to a single machine scheduling problem with the objective of minimising
the total weighted tardiness in which each batch can be viewed as a single job while sequencing the batches.

4.1 Batch sequencing

Because every order will be delivered immediately after the corresponding batch completes its processing, a modified
due time d 0j is introduced such that d 0j ¼ dj � t for job j 2 J. A composite dispatching rule, ATC (Vepsalainen and
Morton 1987), is applied to sort the batches in two ways.

BSR1: Similar to Perez et al. (2005), batches are sorted in non-increasing order of
Pv

j:yjb¼1
Ij ðtÞ, where

Ij ðtÞ ¼
wj

pj
exp
�maxðd 0j � pj � t, 0Þ

k �p

� �
:

k is the look-ahead parameter and �p is the average processing time of all the jobs. Look-ahead parameter k should
be determined based on the problem characteristics. As k increases, the ATC rule reduces to the weighted shortest
processing time (WSPT) and smaller values of k can help to prioritise late jobs or jobs with minimum slack time.
Every time a machine becomes idle at time t, a new sorting index is calculated and the batch with the highest index
is chosen.

BSR2: An aggregated batch due time Db, weight Wb, and processing time Pb are calculated for each batch b 2 B
as follows:

Db ¼

Pn
j:yjb¼1

wjd
0
jPn

j:yjb¼1
wj

, Wb ¼
Xn
j:yjb¼1

wj, Pb ¼
Xn
j:yjb¼1

pj:

The batch due time Db is the weighted average of the modified due times of the jobs included in the batch and the
batch processing time Pb is the sum of the processing times of the jobs in the batch. Every time a machine becomes
available, the batch sorting index BIbðtÞ is used to select the batch for processing. The BIbðtÞ index for batch b 2 B
at time t is

BIbðtÞ ¼
Wb

Pb
exp
�maxðDb � Pb � t, 0Þ

k �P

� �
:

Similar to BSR1, the sorting index requires the use of the look-ahead parameter, k, and �P is calculated as the
average of all batch processing times.

We employ both sequencing rules combined with the three variants of NSGA-II discussed above. As a result,
we examine six different heuristics approaches for our multi-objective supply chain scheduling problem (Table 2).

5. Computational results

5.1 Test problems

An extensive set of problem instances was used to test the performance of our proposed approach (Table 3).
We consider three different sets of jobs (8, 20, and 50). The weights of the jobs are randomly generated integer

Table 2. Heuristic descriptions.

Heuristic Trip assignment (distribution) Batch sequencing (production)

MO1 NSGA-II-Type0 BSR1
MO2 NSGA-II-Type0 BSR2
MO3 NSGA-II-Type1 BSR1
MO4 NSGA-II-Type1 BSR2
MO5 NSGA-II-Type2 BSR1
MO6 NSGA-II-Type2 BSR2
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values from [1, 5] and [1, 10]. Two different levels of job sizes are generated from a discrete uniform distribution
in the ranges [1, 25] and [1, 50] where the vehicle capacity is 50. The number of customers, job due times, processing
times, transportation times, and transportation costs are generated similar to Pundoor and Chen (2005).
We examine two levels for the number of customers, 2 and 4. The transportation times required to travel to each
customer are discrete random numbers between 10 and 100. Transportation costs are equal to transportation times.
A random integer is generated from [1, 10] for each job’s processing time. Job due times are generated from
a discrete uniform distribution DU½ pmin þ tmin, �=2ðð pmin þ pmaxÞnþ ðtmin þ tmaxÞÞ�, where pmin and pmax are the
minimum and maximum processing times, and likewise tmin and tmax are the minimum and maximum transportation
times. Three different levels of the due time tightness factor � were investigated (0.5, 1, and 1.5). Due times are also
characterised by processing and transportation times.

For each of the 72 test combinations (3� 2� 2� 2� 3), 10 random instances were generated. Therefore, a total
of 720 problem instances were used to examine the performance of our proposed algorithms.

5.2 Mathematical model solutions

The optimisation model is implemented in AMPL and solved by CPLEX 11.1 to generate Pareto-optimal solutions
for small-sized (eight-job) problems. Both objectives are aggregated into a single objective by summing the weighted
objectives. A non-negative scaling parameter � is used to assign different weights to objectives such that � for TC
and ð1� �Þ for TWT. Because it is not possible to investigate every combination in a reasonable time (within
2 hours), we employ � in declines of 0.1 starting from 1 and resulting in 11 different objective functions for the same
problem instance. For eight-job instances, these 11 points may not be representative of the entire solution space.
Therefore, optimal solutions for the given objectives are placed in the set of partial Pareto-optimal solutions, PPO,
and compared with the non-dominated solutions found by each heuristic.

5.3 Heuristic solutions

Our heuristic algorithms are implemented in Visual Basic for Applications (Excel 2007). All tests are performed on
a PC with an Intel Pentium Dual-Core Processor (3.39GHz CPU speed) with 3 GB RAM. Look-ahead parameter k
is selected as 1.5 in the batch sequencing rules. To employ GAs, the population size is set as 100. Algorithms are
iterated 100 times, in other words 100 generations are created. The crossover probability, pc, is 0.8, and 0.1 is used
for the mutation probability, pm. Many researchers use Pareto front solutions as the performance measure for
algorithms developed for multi-objective problems (Cochran et al. 2003). Such an approach helps to compare the
performances of each heuristic with respect to all objectives at the same time. We combine all Pareto front solutions
achieved from different heuristics in a new set of non-dominated solutions, the Pareto best front
(PBF MO1� 6ð1repÞ). Because there can be overlapping solutions between heuristics or a solution can be
dominated by another solution of a different heuristic, the number of solutions in PBF MO1� 6ð1repÞ is less than
or equal to the aggregate of the Pareto front solutions of all heuristics. We define the performance of the heuristics
based on the number of Pareto front solutions that have been contributed to the set of solutions in
PBF MO1� 6ð1repÞ by each heuristic. Let NDðHÞ be the Pareto front solutions in PBF MO1� 6ð1repÞ that
are obtained by heuristic H and NDðBÞ be the total number of non-dominated solutions in PBF MO1� 6ð1repÞ.

Table 3. Experimental design.

Factor Level Level description

Number of customers 2 2, 4
Job due times 3 DU½ pmin þ tmin, �=2ðð pmin þ pmaxÞnþ ðtmin þ tmaxÞÞ�, �¼ 0.5, 1, 1.5
Job weights 2 DU[1,5], DU[1,10]
Job sizes 2 DU[1,25], DU[1,50]
Job processing times 1 DU[1,10]
Transportation times 1 DU[10,100]
Number of jobs 3 8, 20, and 50
Total 72
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The performance ratio of a particular heuristic H, PRðHÞ ¼ NDðHÞ=NDðBÞ, is computed to assess the solution
quality of the different heuristics in all instances. The performance ratios of each heuristic over all problem instances
are given in Table 4. Heuristics employing BSR2 in the production scheduling stage (aggregated batch due times,
processing times, and weights are utilised for the jobs of the same trip) outperform the heuristics with BSR1.
(An index is computed for each job and the total index of a particular trip’s jobs is considered for sequencing.)
The best two heuristics are highly competitive. On average, 56.8% of PBF MO1� 6ð1repÞ is obtained by MO4
(10% of the next generation is created by immigration and BSR2 is used as the batch sequencing rule), whereas
55.3% of PBF MO1� 6ð1repÞ is obtained by MO2 (BSR2 is applied with no immigration). As the number of jobs
increases, heuristics without immigration perform better. MO2 produces the most Pareto best front solutions when
the number of job sizes is large, due times are tight, and job sizes are small. MO2 also produces more Pareto best
front solutions than MO4 when more customers are positioned in the supply chain. There is also a slight increase
in solution times when immigration is employed. (For example, in 50-job instances, MO2 takes 121 seconds
on average, whereas MO4 averages 130 seconds.)

5.4 Comparison of PPO and PBF_MO1 – 6(1rep)

We now examine the performance of heuristics relative to the mathematical modelling approach. To obtain a
better understanding of the solution quality, a Pareto super front (PSF) is formed by combining PPO and
PBF MO1� 6ð1repÞ. Similar to computing individual heuristic performances, the quality of the solutions in
PBF MO1� 6ð1repÞ and PPO is evaluated by the number of solutions contributed to PSF. For example, the
performance ratio of PBF MO1� 6ð1repÞ, PRðH�Þ, is NDðH�Þ=NDðSÞ, where the number of Pareto front solutions
achieved by heuristics that are also non-dominated in PSF is defined as NDðH�Þ and ND(S) is the total number of
non-dominated solutions in the Pareto super front. Table 5 shows the results for each level of the experimental
design factors when the approaches are employed in eight-job instances. Both approaches produce a significant
number of non-dominated solutions for the super front. The heuristics are able to find new non-dominated solutions
when compared with solutions of the mathematical modelling approach. On average, 16.6% of the Pareto super
front is new solutions produced by the heuristics in addition to those obtained from the optimisation model using
different objective functions. On the other hand, heuristics can produce solutions in a much faster manner;
on average, GAs run in 24 seconds, whereas mathematical models take over 1.5 hours to achieve solutions for each
eight-job instance.

5.5 An example problem

We present both a mathematical model and heuristic solutions for an example eight-job problem instance in order
to obtain a better understanding of our solution approaches and performance evaluation. Figure 8 shows a plot
of the non-dominated solutions of the mathematical models (PPO), along with solutions achieved with the heuristics

Table 4. Heuristic results (%).

Level MO1 MO2 MO3 MO4 MO5 MO6

No. of jobs 8 40.9 85.7 42.6 90.4 42.2 88.5
20 8.0 34.9 6.7 40.9 4.6 29.0
50 17.9 47.6 11.5 38.1 2.8 5.9

No. of customers 2 22.6 49.8 20.6 53.4 16.5 37.4
4 20.9 61.5 19.5 60.4 17.3 52.1

Job due time Tightness factor 0.5 34.2 53.7 32.0 51.9 28.1 40.6
1 15.3 54.8 14.4 59.8 11.2 45.0
1.5 15.8 57.4 13.6 58.6 11.1 46.6

Job sizes DU[1,25] 21.6 51.9 20.9 51.3 17.0 40.9
DU[1,50] 22.0 58.8 19.2 62.4 16.7 47.3

Job weights DU[1,5] 21.4 55.1 19.5 57.0 16.3 44.3
DU[1,10] 22.2 55.5 20.6 56.6 17.4 43.8

Averages 21.8 55.3 20.1 56.8 16.8 44.0
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(PBF MO1� 6ð1repÞ) for the same example problem instance. PSF solutions, which are non-dominated solutions
over all solutions obtained by both approaches, are circled. Even if the heuristics initially generated the same
number of non-dominated solutions as the mathematical model, four of them were dominated by mathematical
model solutions and one solution (136, 450) is obtained by both. In total, PSF includes eight solutions – five of them
obtained by only mathematical models, and heuristics provide two new non-dominated solutions where one solution
is obtained by both approaches. Therefore, the performance ratio of the mathematical models is 75% (6/8), and
37.5% (3/8) is the heuristics’ performance ratio. Given the super front, a decision-maker can evaluate the trade-off
between different solutions. For example, with a slight increase in the total transportation cost, one may prefer
solution (214, 199) instead of solution (194, 384) to achieve a significant reduction in the total weighted tardiness.

5.6 Heuristic solutions after 30 replications

In the above computational studies, each instance is replicated only once in order to make a fair comparison with
mathematical model solutions. We further evaluate the performance of the heuristics with respect to replication
times by replicating each instance 30 times for the best two heuristics (MO2 and MO4). Another set of experiments
was run and PBF MO2, 4ð30repÞ was formed by only considering the solutions achieved by the two heuristics after
30 replications. The performance ratios of each heuristic over all problem instances and all replications are given
in Table 6.

Table 6. Heuristic performances (%) compared with PBF MO2, 4ð30repÞ.

One replication 10 replications 20 replications 30 replications

Level MO2 MO4 MO2 MO4 MO2 MO4 MO2 MO4

No. of jobs 8 94.16 99.42 99.57 100.00 99.71 100.00 99.79 100.00
20 59.65 62.68 73.76 78.10 78.75 80.78 81.45 81.60
50 49.33 42.10 58.90 42.15 59.26 42.85 61.71 43.11

No. of customers 2 65.27 67.03 75.45 72.17 77.38 73.40 78.93 73.83
4 70.16 69.13 79.35 74.63 81.12 75.73 83.04 75.96

Job due time Tightness factor 0.5 68.63 69.74 76.90 73.45 78.49 74.39 79.44 74.63
1 65.84 67.39 74.06 74.20 78.13 74.42 80.26 74.65
1.5 68.67 67.12 81.23 72.62 81.24 74.90 83.26 75.49

Job sizes DU[1,25] 68.39 66.45 75.51 70.56 78.71 71.12 79.22 71.58
DU[1,50] 67.03 69.72 79.29 76.28 79.80 77.99 82.75 78.23

Job weights DU[1,5] 69.59 66.13 77.08 74.08 80.10 74.44 81.91 74.91
DU[1,10] 65.84 70.04 77.72 72.75 78.40 74.66 80.06 74.88

Averages 67.71 68.08 77.40 73.41 79.25 74.55 80.98 74.90

Table 5. Mathematical models versus heuristics (%).

PPO PBF MO1� 6ð1repÞ

No. of customers 2 82.9 55.5
4 83.9 45.3

Job due time
Tightness factor

0.5 76.0 56.7
1 84.2 38.5
1.5 90.0 56.0

Job sizes DU[1,25] 77.0 56.7
DU[1,50] 89.8 44.1

Job weights DU[1,5] 81.4 58.4
DU[1,10] 85.4 42.5

Averages 83.4 50.4

Figure 8. Solution plot for an example problem.
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As we replicate the same instance multiple times, we continue to get similar results. Both heuristics are still
quite competitive and MO2 (BSR2 is used in the batch sequencing phase with no immigration) constantly produces
more Pareto best front solutions than MO4 (10% of the next generation is created by immigration where BSR2
is used) for large-sized instances. For small-sized problems, 10 replications with MO4 are sufficient to achieve
all non-dominated solutions found by replicating both heuristics 30 times. Running both of the heuristics in parallel
may be preferred for large-sized instances because each heuristic can find different solutions of PBF MO2, 4ð30repÞ.
For example, in 50-job problem instances, only 61.71% of PBF MO2, 4ð30repÞ is found by MO2 after
30 replications. The conclusions concerning other levels are more indistinct. Performance ratios are either close
to each other, or one heuristic’s dominance over another changes after a certain number of replications (i.e. when
the due time tightness factor is 1). Overall, we can state that both heuristics are competitive and able to contribute
to the Pareto best front with different solutions. Thus, a decision-maker may prefer employing both of them
together to obtain a better Pareto front.

6. Conclusions and future research

In this paper, we investigate integrated production and distribution planning decisions in a supply chain at
a detailed scheduling level. Our problem involves multiple objectives: minimising the weighted tardiness and
minimising the total distribution costs. We develop different genetic algorithms combined with dispatching rules to
handle both objectives of our supply chain scheduling problem and find an approximation of the Pareto-optimal set.
The algorithms use the fast and elitist non-dominated sorting scheme of Deb et al. (2002). The solutions obtained
by each heuristic are compared with the Pareto best front, a combination of Pareto front solutions from all
heuristics. To further assess the solution quality of the heuristics, another set of solutions for each small-sized
instance is generated using different objective functions in the proposed mathematical model.

Algorithms employing BSR2 on the production side (aggregated batch due dates, processing times, and weights
are utilised for jobs of the same trip) produce more Pareto best front solutions than those with BSR1 (where an
index is computed for each job and a total index of a particular trip’s jobs is considered for sequencing). Heuristics
also find more Pareto best front solutions without immigration in large-sized problem instances. Computational
tests have shown that both the mathematical modelling and heuristics approaches are competitive and can produce
a significant number of non-dominated solutions for the super front. Heuristics are able to find new non-dominated
solutions. On average, a significant fraction of the Pareto super front is composed of new solutions produced
by heuristics in addition to those obtained from the optimisation model using different objective functions for
small-sized instances. These results indicate that heuristics are not only able to produce the same Pareto front
solutions, but also new solutions because it is not practical to run the mathematical model for every combination
of the weighted objectives.

To our knowledge, this research is the first study tackling a multi-objective supply chain scheduling problem by
generating an approximate set of Pareto-optimal solutions. There is still a vast area of research problems (Table 1)
in which multi-objective evolutionary algorithms can be applied. The problem studied in this paper can be extended
by considering multiple machines in the production stage and involving routing decisions in order deliveries.
Another interesting research topic would be to examine the different chromosome encodings for NSGA-II in which
production schedules could also be involved.
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Appendix A: An example iteration of NSGA-II

Suppose that there are three customers with orders fJ1, J2, J3, J4g, fJ5, J6, J7, J8g, and fJ9, J10g, respectively, as in the previous
example and we set the initial population size as 10. Our aim is to show how an iteration of NSGA-II-type0 (without
immigration) takes place.

(1) A population of strings is generated randomly or transferred from the previous generation (Figure A1).
(2) An offspring population is generated through crossover and mutation operations (Figure A2). In our study, crossover and

mutation are not applied deterministically. Therefore, there can be solutions that are tranferred directly to the offspring
population, such as C3–C4 (parent solutions P3–P4 but crossover was not applied). Moreover, infeasibilities are penalised.
For example, solutions C7 and C8 are obtained from parent solutions P8 and P9 where the first five job assignments of the parent
solutions are exchanged. Since for C8 all jobs of customer 2 are assigned to the same trip (trip 8), the vehicle capacity is
exceeded and the objective values are multiplied by an exponential function of the number of infeasible trips (1279� e1¼ 3477
and 6596� e1¼ 17,390). Finally, an example of mutation can be found in solution C6. Crossover is applied to parent solutions
P3 and P8 and offspring solutions C5 and C6 are formed. Then, offspring solution C6 is selected for mutation in which a random
trip (trip 1 instead of trip 2) is assigned to job 1.

(3) All parent and offspring solutions are combined. The fronts for the combined populations are determined as well as the
crowding distance in each front. The combined populations are sorted based on the front and the crowding distance in each
front (Figure A3). The first 10 individuals (above the dashed line) are selected to be the parent population of the next generation.
Since the number of individuals in the first front exceeds 10, crowding distances are used to identify those to be transferred.
A very large number E, which is assigned to the boundary solutions of each objective in every front, is set as 9999 in the crowding
distance calculation of the above example. Note that although some solutions may have the same objective values, they may
correspond to different solution configurations, and the crowding distances differ depending on how the neighbouring solutions
are located in objective space.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 TC TWT

P1 2 3 4 3 6 7 8 7 10 10 1373 6522
P2 3 4 1 4 5 8 5 8 10 10 1349 6623
P3 4 1 1 2 6 5 6 6 9 10 1396 7340
P4 1 2 2 1 8 7 8 8 9 9 1317 6974
P5 4 2 3 3 8 7 6 5 10 9 1519 7657
P6 2 3 4 2 5 7 7 5 10 10 1349 6623
P7 4 2 2 1 6 5 6 5 9 10 1469 7168
P8 2 2 1 1 7 8 8 8 9 9 1317 6974
P9 4 3 4 2 8 5 6 5 10 9 1469 7168

P10 1 2 1 4 8 8 5 7 9 10 1469 7168

Customer 1 Customer 2 Customer 3 Objective Values

Assigned 
Trips

Solution
#

Figure A1. A population of 10 trip scenarios.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 TC TWT

C1 3 4 1 4 5 8 8 8 9 9 1349 6623
C2 2 2 1 1 5 8 5 8 10 10 1317 6974
C3 4 1 1 2 6 5 6 6 9 10 1396 7287
C4 1 2 2 1 8 7 8 8 9 9 1317 6974
C5 4 1 1 2 6 5 6 6 9 9 1349 6623
C6 1 2 1 1 7 8 8 8 9 10 1358 6558
C7 2 2 1 1 7 5 6 5 10 9 1421 7287
C8 4 3 4 2 8 8 8 8 9 9 3477 17930
C9 2 3 2 1 8 7 8 8 9 9 1349 6623
C10 1 2 4 3 6 7 8 7 10 10 1524 7627

Solution
#

Assigned 
Trips

Customer 1 Customer 2 Customer 3 Objective Values

Figure A2. Offspring population.
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J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 TC TWT

P1 2 3 4 3 6 7 8 7 10 10 1373 6522 1 19998
P4 1 2 2 1 8 7 8 8 9 9 1317 6974 1 9999.7765
C4 1 2 2 1 8 7 8 8 9 9 1317 6974 1 9999.5714
C9 2 3 2 1 8 7 8 8 9 9 1349 6623 1 0.937263
P2 3 4 1 4 5 8 5 8 10 10 1349 6623 1 0.7152339
C6 1 2 1 1 7 8 8 8 9 10 1358 6558 1 0.6520228
P6 2 3 4 2 5 7 7 5 10 10 1349 6623 1 0
C1 3 4 1 4 5 8 8 8 9 9 1349 6623 1 0
C5 4 1 1 2 6 5 6 6 9 9 1349 6623 1 0
P8 2 2 1 1 7 8 8 8 9 9 1317 6974 1 0
C2 2 2 1 1 5 8 5 8 10 10 1317 6974 1 0
P3 4 1 1 2 6 5 6 6 9 10 1396 7340 2 19998
P10 1 2 1 4 8 8 5 7 9 10 1469 7168 2 9999.6919
P7 4 2 2 1 6 5 6 5 9 10 1469 7168 2 9999.6575
C7 2 2 1 1 7 5 6 5 10 9 1421 7287 2 1.3081395
C3 4 1 1 2 6 5 6 6 9 10 1396 7287 2 1.0343262
P9 4 3 4 2 8 5 6 5 10 9 1469 7168 2 0

C10 1 2 4 3 6 7 8 7 10 10 1524 7627 3 19998
P5 4 2 3 3 8 7 6 5 10 9 1519 7657 3 19998
C8 4 3 4 2 8 8 8 8 9 9 3476.682 17929.79 4 19998

Assigned 
Trips

Solution 
#

Crowding 
Distance

Customer 1 Customer 2 Customer 3 Objective Values
Front

Figure A3. Mating pool.
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