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In this paper, we investigate a supply network design in supply chain with unreliable supply with appli-
cation in the pharmaceutical industry. We consider two types of decision making policies: (1) a risk-
neutral decision-making policy that is based on a cost-minimization approach and (2) a risk-averse policy
wherein, rather than selecting facilities and identifying the pertinent supplier–consumer assignments
that minimize the expected cost, the decision-maker uses a Conditional Value-at-Risk (CVaR) approach
to measure and quantify risk and to define what comprises a worst-case scenario. The CVaR methodology
allows the decision-maker to specify to what extent worst-case scenarios should be avoided and the cor-
responding costs associated with such a policy. After introducing the underlying optimization models, we
present computational analysis and statistical analysis to compare the results of the risk-averse and risk-
neutral policies. In addition, we provide several managerial insights.

� 2014 Elsevier Ltd. All rights reserved.
1. Background and literature review

In addition to the invention of new products, human population
changes and economic globalization are causing greater volumes of
raw materials and finished products to move through the supply
chain. In some supply chains, such as healthcare/pharmaceutical,
global pharmaceutical outsourcing is also creating a complex and
risky supply chain environment. That is because medical products
flow from raw source materials to finished products for consumers
between regions. At every stage in this process, risks of contamina-
tion, diversion, counterfeit, and adulteration arise. Furthermore,
even a slight supply disruption or material contamination can stop
the production and flow of goods to the market and can result in
catastrophic events such as patient illness or death.

Several disruptions in healthcare/pharmaceutical supply chains
have already occurred. For example, in 2004, the disruption of the
supply of a flu vaccine manufacturer in Bristol, UK had disastrous
consequences. The UK government stopped production when US
regulators inspected a manufacturing plant and found evidence
of bacterial contamination problems. This reduced the US’s supply
of the vaccine by nearly 50% during the 2004–2005 flu season
(Everett & Baker, 2004). Pharmaceutical and healthcare supply
chains are also susceptible to disruptions caused by contamination.
Heparin, a widely-used blood-thinning medicine that is made from
pig intestines, was contaminated by an undetected outbreak of
blue ear pig disease in China in 2008. This contamination led to
81 patient deaths and to hundreds of allergic reactions in the US
(Usdin, 2009). The investigation of the event involved several gov-
ernment agencies, university researchers, and a biotech company
that had a generic heparin under FDA review. Although no one
understood at the time what was causing the reactions, members
of Congress concluded that the issue was the result of ‘‘regulatory
failure’’ because of news reports that the FDA had not inspected a
Chinese heparin production facility (Usdin, 2009). Another recent
story is the multistate meningitis outbreak that occurred in 2012
in the USA and contaminated the injected medication, causing sev-
eral deaths and infections. The investigation revealed the lack of
proper inspections at the raw material supplier’s facility (Bell &
Khabbaz, 2013).

These incidents accentuate the need to consider the risks and
supply disruptions to pharmaceutical supply chains and also reveal
the prevalence of receiving tainted materials from suppliers in the
design and planning stages. Deceived by the small likelihood of
such disruptions, managers tend to underestimate the impact of
such mishaps. Nevertheless, the objective of the majority of the
papers reviewed in this study was to describe cost minimization
approaches with the assumption that decision-makers are risk-
neutral. The risk-neutral policy may arise due to forces of global-
ization, which encourage firms to aggressively design their supply
network base around the world in order to find opportunities for
reducing supply chain costs. However, emphasizing supply chain
costs may make that chain fragile and more susceptible to the risk
of disruption.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2014.09.030&domain=pdf
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A small body of literature has addressed the risk-averse approach
to decision-making in the supply chain network design. With the
objective of either minimizing the expected opportunity loss or
minimizing the maximum opportunity loss, Current, Ratick, and
ReVelle (1998) studied problems in which the total number of facil-
ities to be located is uncertain over a planning horizon. Gaonkar and
Viswanadham (2007) developed a model for selecting suppliers to
minimize the expected shortfall under disruption. The general idea
is to match demand and supply using cost as the single criterion.
Some other researchers also developed risk-based analytical
approaches to supplier selection and evaluation (Lee, 2009;
Micheli, 2008; Ravindrana, Bilsela, Wadhwab, & Yangc, 2010).

Some researchers applied the concept of mean–variance opti-
mization (see Markowitz Harry (1952)) in the supply chain net-
work design problem (Hanink, 1984; Hodder, 1984; Hodder &
Dincer, 1986; Jucker & Carlson, 1976; Liu & Nagurney, 2010;
Tomlin, 2006; Wu, Li, Wang, & Cheng, 2009). In this application,
the firms consider both costs and risks in their model by using a
mean–variance approach to minimize the expected total cost and
valuation of the risk. The objective function is of the form
Z ¼ Eð~sÞ � kVarð~sÞ where ~s denotes the random payoff and k is a
measure of risk aversion (Liu & Nagurney, 2010). However, several
limitations are associated with this mean–variance formulation.
For instance, the estimate of risk by mean–variance is only suitable
when returns are normally distributed (see Pardalos, Migdalas, and
Baourakis (2004).)

Other researchers have used Value at Risk (VaR) to make strate-
gic/tactical decisions in the supply chain network design (Alonso-
Ayuso, Escudero, Garı́n, Ortuño, & Pérez, 2005; Gan, Sethi, & Yan,
2004; Luciano, Peccati, & Cifarelli, 2003; Ravindran, Ufuk Bilsel,
Wadhwa, & Yang, 2010; Wagner, Bhadury, & Peng, 2009). VaR is
a risk measure that mostly focuses on rare events and provides
the value that can be expected to be lost during severe, adverse
market fluctuations (Cornuejols & Tütüncü, 2007). There are some
problems associated with VaR, which will be discussed in Sec-
tion 2.2. Therefore, these issues led some researchers to use an
alternative measure called Conditional Value-at-risk (CVaR) in a
few areas such as portfolio optimization (Krokhmal, Palmquist, &
Uryasev, 2002), transportation and fleet allocation (Yin, 2008),
market/demand selection (Chahar & Taaffe, 2009), electricity pro-
curement (Carrión, Philpott, Conejo, & Arroyo, 2007), and facility
location (Daskin, Hesse, & Revelle, 1997). By utilizing the CVaR
concept, Chen, Daskin, Shen, and Uryasev (2006) addressed an
uncapacitated stochastic p-median problem in which the objective
was to minimize the expected regret associated with a subset of
worst-case scenarios whose collective probability of occurrence
is not more than 1-a. In their model, the demand and the distance
between the demand nodes and the facilities were stochastic.

In this research, we focus on the risks inherent in the pharma-
ceutical supply chain. We consider two types of decision-making
policies. A risk-neutral decision-making policy is based on the cost
minimization approach. In this approach, the decision-maker
defines the set of decisions that minimize the expected cost. We
also consider a risk-averse policy wherein, rather than selecting
facilities that minimize the expected cost, the decision-maker uses
a CVaR approach to measure and quantify risk and to define what
qualifies as a worst-case scenario. This methodology allows the
user to specify the extent to which these worst-case scenarios
should be avoided.

The goal of our model is to design a single-period, single-prod-
uct pharmaceutical supply chain network with capacitated facili-
ties to hedge against the risk of sending tainted materials to
consumers. We focus on supply disruptions that impact the loss
of all or a substantial fraction of the production at a set of facilities
in the same geographic area due to the production of tainted
materials.
A key parameter in our model is the consideration of the inspec-
tion of the production facility. This aspect of the work was inspired
by tragedies such as the heparin incident (Usdin, 2009). If the risk
of shipping tainted materials can be minimized prior to such trag-
edies, then producers can decrease liability and improve consumer
safety. Insights into how our model should be configured to avoid
the risk of tainted products reaching consumers are of interest to
several types of supply chains such as healthcare, pharmaceutical,
cosmetic and beauty, and food and dairy industries.

In this research, we also perform a logistic regression statistical
analysis to identify the factors that impact our strategic decisions
in both the CVaR and cost minimization models. To the best of
our knowledge, the problem we address and the regression model
we use have not been previously used in this type of research.

The outcome of our models and the statistical analysis enable
managers to select the most qualified suppliers for their pharma-
ceutical supply chain and to make capacity allocation and inspec-
tion implementation decisions under both risk-neutral and risk-
averse policies. The proposed models also determine when and
where inspections and monitoring should be performed to prevent
tainted material from reaching consumers (patients). This study
will aid practitioners designing supply chains and policy makers
devising various disruption mitigation strategies on the costs and
risks in the pharmaceutical supply chain.

In this paper, the mathematical formulations of both the risk-
neutral and risk-averse policies are introduced in Section 2. In Sec-
tion 3 the data generation method is presented. Computational
experiments and sensitivity analysis are discussed in Section 4. Sec-
tion 5 contains our statistical analysis. Finally, Section 6 includes
our conclusions and our recommendations for future work.
2. Framework and mathematical formulations

2.1. The cost minimization model

We utilize a mixed integer stochastic programming model that
is formulated as a two-stage optimization problem. The selection
of the facilities is considered at the first stage and is modeled as
a binary decision. The second-stage decision variables include tac-
tical decisions that are made after the realization of the random
events (supply disruption) is known. The second-stage of the for-
mulation indicate the capacity allocation decisions as well as the
decision to inspect each facility. This stage is referred to as a capac-
ity allocation problem in which cost is minimized by allocating the
capacity and determining whether or not inspection should be
applied in each selected facility. The inspection decision is modeled
as a binary variable for each facility. The model enables us to deter-
mine when and where inspections should be implemented with
the intent of reducing the amount of tainted product shipping to
consumers. Consider a supply chain network N ¼ ðL;CÞ where L
is the set of facilities and C is the set of consumers. In the first stage,
xl is 1 if facility l is selected and is 0 otherwise (where l e L is an
index for facilities). Let Qðx;~sÞ represent the optimal solution of
the second-stage problem corresponding to the first-stage decision
variable x and the random scenario ~s. Thus, the stochastic formula-
tion of the problem can be written as

min
X
l2L

xlf l þ E½Qðx;~sÞ� ð1Þ
subject to xl 2 f0;1g 8l 2 L; ð2Þ

where E½Qðx;~sÞ� is the expected cost taken with respect to random
scenario ~s which indicates the realization of a facility’s state. The
objective (1) in the first-stage problem is the sum of the cost of
selecting facilities. The first-stage constraint (2) restricts the
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decision variables xl to be binary. Given a feasible first-stage solu-
tion vector x, the objective of the second-stage problem for random
scenario~s minimizes the sum of the allocation (shipping) cost of the
untainted products, the cost of shipping tainted product, the cost of
discarding tainted product after inspection, and the cost of inspec-
tion. In this model, we discard tainted products. An alternative is to
repair (or rework) the tainted product, an option which we may
consider in future research.

To deal with the uncertainty in the second stage, a scenario-
based modeling approach is proposed that has been used in stochas-
tic programing problems (Alonso-Ayuso, Escudero, Garin, Ortuno, &
Pérez, 2003; Shapiro, 2008). In the second stage, let us consider ran-
dom scenario ~s to have a discrete distribution Prð~s ¼ sÞ ¼ qs where
qs is the probability of occurrence for scenario s . Given a finite set
of scenarios, with associated probabilities qs; E½Qðx;~sÞ� can be evalu-
ated as E½Qðx;~sÞ� ¼

P
s2SqSQðx; sÞ: Hence, we can present the deter-

ministic equivalent of the formulation (1). To simplify, we denote
this as the Supply Chain Design (SCD) model. We first summarize
the complete notation for the SCD as sets and parameters:
Sets

C
 the set of consumers, indexed by c

L
 the set of candidate facilities, indexed by l

S
 the set of realized scenarios, indexed by s

Parameters

fl
 the fixed cost of opening facility l

jl
 the capacity of facility l

bc
 the total demand of consumer c

nl
 the fixed cost of implementing an inspection at

candidate facility l

klc
 the cost of shipping an untainted product from

facility l to consumer c

olc
 the penalty cost for shipping a tainted product

from facility l to consumer c

clc
 the cost of discarding a tainted product at facility

l after inspection originally destined for
consumer c
qs
 the probability of occurrence for scenario s

qls
 the fraction of tainted products produced at

facility l in scenario s

rls
 the fraction of tainted products produced at

facility l after inspection in scenario s (we
assume qls > rls)
To make the definitions of qls and rls clearer, suppose that, under
scenario s, the extent of failures at the unreliable facility l is given
by qls = 0.20 and rls = 0.05. This means that for every 100 units of
production at facility l, 100qls = 20 of them will be tainted. If no
inspection is implemented, these 20 tainted units will be shipped
to consumers. If inspection is implemented, 15 of these 20 tainted
units will be detected and discarded while 100rls = 5 units will be
undetected and shipped to consumers.
Decision�
 variables
xl¼
1; if facility l is selected;
0; else

zls¼
1; if inspection is implemented at facility lin scenarios;
0; else

�

plcs
 the number of products shipped from facility l to

consumer c in scenario s

klcs
 number of tainted products produced at facility l

intended to be shipped to consumer c in scenario s

dlcs
 number of tainted products discarded at facility

lintended to be shipped to consumer c after inspection
in scenario s
The deterministic equivalent of the stochastic formulation is
proposed in (Madadi, Kurz, Mason, & Taaffe, 2012). For the conve-
nience of the reader, we also present the formulation in the follow-
ing. Note that the second-stage decision variables are indexed by a
scenario index. The SCD model follows.

½SCD� min
X
l2L

xlf l þ
X
s2S

qs

X
l2L

X
c2C

klc½ð1� qlsÞplcs� þ
X
l2L

X
c2C

olcklcs

 

þ
X
l2L

X
c2C

clcdlcs þ
X
l2L

nlzls

!
ð3Þ

subject to
X
c2C

½ð1� qlsÞplcs þ klcs þ dlcs� � jlxl 8l 2 L; s 2 S ð4Þ

klcs þ dlcs ¼ qlsplcs 8c 2 C; l 2 L; s 2 S ð5Þ

klcs � ðrlsÞplcs 6 Mð1� zlsÞ 8c 2 C; l 2 L; s 2 S ð6Þ

dlcs � ðqls � rlsÞplcs 6 Mð1� zlsÞ 8c 2 C; l 2 L; s 2 S ð7Þ

dlcs � MðzlsÞ 8c 2 C; l 2 L; s 2 S ð8ÞX
l2L

½ð1� qlsÞplcs þ klcs� ¼ bc 8c 2 C; s 2 S ð9Þ

zls 6 xl 8l 2 L; s 2 S ð10Þ

klcs; dlcs; plcs P 0 8c 2 C; l 2 L; s 2 S ð11Þ

zls 2 f0;1g 8l 2 L; s 2 S ð12Þ

xl 2 f0;1g 8l 2 L ð13Þ

The objective function (3) in the first stage problem is the sum of
fixed cost of selecting facilities. The second stage consists of four
distinct terms. The first term,

P
l2L

P
c2Cklc½ð1� qlsÞplcs�

� �
, represents

the expected transportation cost of shipping untainted products.
The second term

P
l2L

P
c2Colcklcs

� �
and the third termP

l2L

P
c2Cclcdlcs

� �
represent the penalty cost of supplying tainted

products for the consumers and the cost of discarding tainted prod-
ucts, respectively. Finally, the last term

P
l2Lnlzls

� �
is the cost of

inspection, which is implemented at a facility site.
Constraint set (4) requires a facility to be open if any portion of

the consumer demand is served from the facility. In addition, con-
straint set (4) ensures that the total consumer demand assigned to
any facility does not exceed the facility’s capacity. Constraint sets
(5)–(8) together represent the amount of tainted product that is
shipped to the consumer. Hence, without inspection, when zls = 0,
constraint set (8) implies that dlcs = 0. Given constraint set (5), all
of the tainted products will reach the consumer. However if
inspection is implemented, constraint sets (6) and (7) imply that
only products passing inspection (which may include some tainted
products) will be shipped to the consumer. Constraint set (9)
requires that the demand of every consumer be met. Constraint
set (10) implies that inspection is applied only to the selected set
of facilities. Constraint set (11) requires that klcs, dlcs, and plcs are
positive values. Finally, constraint sets (12) and (13) place binary
restrictions on variables zls and xl.

2.2. The Conditional Value-at-Risk (CVaR) concept

The CVaR builds upon the measure called Value-at-Risk (VaR).
VaR is a popular method to measure risk in a portfolio. VaR focuses
on all outcomes below a specific level. Therefore, given a probabil-
ity a, VaR answers the question: ‘‘What is the maximum loss



Fig. 1. Illustration of relation between CVaR and VaR.
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associated with 100a% probability over a target horizon?’’ Despite
the popularity of VaR in finance and risk management, this
technique has a few important undesirable properties. Artzner,
Delbaen, Eber, and Heath (1999) pointed out that VaR is not a
coherent measure of risk since it fails to hold the sub-additivity
property. Therefore, the VaR of a portfolio can be higher than the
sum of VaRs of the individual assets in the portfolio (i.e.,
f(x + y) 6 f(x) + f(y) where f(.) is the risk measure). Moreover, VaR
is difficult to optimize when it is calculated using the scenario-
based approach (Rockafellar & Uryasev, 2000). These reasons have
led us to use an alternative measure CVaR.

The CVaR measure leads to a minimization of VaR because CVaR
is greater than or equal to VaR (see Fig. 1 and Eq. (17)). The CVaR
measure considers those outcomes in which losses over a specific
period of time exceed VaR. In other words, we allow (1 � a)100%
of the outcomes to exceed VaR, and the average value of these out-
comes is represented by CVaR. Generally, a indicates the level of
conservatism that a decision-maker is willing to adopt. As a
approaches one, the range of acceptable worst-cases becomes nar-
rower in the corresponding optimization problem. Fig. 1 clarifies
the concept of CVaR and demonstrates that CVaR is the conditional
expected value exceeding the VaR. The gray bars represent the sce-
narios. All the scenarios to the right of VaR are the worst-case sce-
narios. Fig. 1 also illustrates the relationship between CVaR and
VaR and indicates the fact that CVaR is always greater than or equal
to VaR. The distribution is skewed to the right and therefore, the
number of worst-case outcomes is reduced when a is increased
to 95%.

We provide the formal definition of VaR and CVaR in the follow-
ing equation. Consider, for example, a random variable ~x that rep-
resents loss from an outcome. Given a risk level a (a 2 ð0;1Þ), the
VaR of the random variable ~x is given by

VaRa½~x� :¼minfg : Prð~x P gÞ 6 1� ag: ð14Þ

Given Eq. (14), the CVaR at risk level a, is defined by Rockafellar and
Uryasev (2000) as

CVaRa½~x� ¼ Ef~xj~x P VaRað~xÞg: ð15Þ

Rockafellar and Uryasev (2000) proved that for a minimization prob-
lem, the CVaR can be computed as the optimal objective value of
CVaRað~xÞ ¼ minfgþ 1
1� a

maxð~x� g;0Þ g: ð16Þ

In Rockafellar and Uryasev also proved that for a set of pre-defined
scenarios with corresponding probabilities, Eq. (16) can be trans-
formed into a linear programming model by introducing the auxil-
iary variables si(i = 1, ..., N) and for a 2 ð0;1Þ as

min gþ 1
1� a

XN

i¼1

qisi ð17Þ

subject to : si � Li � g 8i; ð18Þ

si P 0 8i; ð19Þ

where Li is the realization of the expected loss related to scenario i
(Rockafellar & Uryasev, 2000).

2.3. The CVaR model

In expanding the formulation of the SCD model for a risk-averse
objective, we define g as a decision variable denoting the optimal
value for VaR. The CVaR is a weighted measure of g and the costs
are greater than g. We define ss as the tail loss for scenario s, where
tail loss is defined as the amount by which the loss in scenario s
exceed g. Given Eq. (17) and the SCD model, a risk-averse supply
chain network model with unreliable supply sources for a 2 ð0;1Þ
is defined as

½SCD� CVaR� min gþ 1
1� a

X
s2S

psss ð20Þ

subject to: (4)–(13),

ss P
X
l2L

xlf l þ
X
l2L

X
c2C

fklc½ð1� qlsÞplcs� þ olcklcs þ clcdlcsg

þ
X
l2L

nlzls � g 8s 2 S; ð21Þ

ss P 0 ;8s 2 S: ð22Þ
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In the above formulation, constraint set (21) computes the tail cost
for scenario s. Constraint set (22) indicates that we only consider
the scenarios in which the loss exceeds g.
3. Generation of test instances

We follow the methodology in Madadi et al. (2012) for data
generation and summarize it here for the convenience of the
reader. Let 0 indicate that a facility is operating at full capacity
with no tainted material produced and let 1 indicate that a facility
is not working at full capacity. Let Hl e [0.50, 0.95] be the probabil-
ity of facility l being in State 0 and let it also denote the reliability
of the facility l, drawn from a continuous uniform distribution. The
assumption that all facilities have an identical probability of work-
ing or failing is relaxed (Snyder & Daskin, 2005). If a facility is in
State 1, the proportion of tainted product is randomly selected
from a continuous uniform distribution in the range [0.10, 0.30].
The proportion of tainted product that is detected after inspection
is randomly drawn from a continuous uniform distribution which
is in the range [0.01, 0.09].

To determine the probability of scenario s(qs), we need to define
a scenario. A scenario is defined as an event where a subset of facil-
ities (say L0) are in State 0 and where facilities in the set L n L0 are in
State 1. Given the number of facilities |L|, the total number of sce-
narios in which at least one facility is in State 1 is given byPjLj

i¼1
jLj
i

� �
¼ 2jLj � 1. Including the scenario in which all facilities

are in State 0, the total number of scenarios is 2|L|. Hence, the prob-
ability of realizing a scenario s e S is defined as
qs ¼

Q
l2L0Hl

Q
l2LnL0 ð1�HlÞ. We list other assumptions as follows:

� The fixed cost of opening a facility is drawn from a discrete uni-
form distribution between $1,000,000 and $2,000,000.
� The demand for each consumer is drawn from a discrete uni-

form distribution between 100 and 300 units.
� The cost of inspection at each facility is drawn from a discrete

uniform distribution between $50,000 and $100,000.
� The cost of shipping untainted products is drawn from a dis-

crete uniform distribution between $100 and $1000.
� The penalty cost of shipping tainted products is drawn from a

discrete uniform distribution between $10,000 and $20,000.
� The cost to discard is equal to 25% of the penalty cost of ship-

ping untainted products.
� The fraction of tainted products produced at facility l is corre-

lated with the probability of facility l being in State 0. Hence,
more reliable facilities produce less tainted products.
� The cost of selecting a facility is correlated with the capacity so

that the highest capacity has the highest selection cost.
� The cost of inspection is correlated to the percentage of

improvement, which is the difference between ql and rl.
� The total capacity is tight and is 35% higher than the total demand

before implementing inspection and discarding tainted items.
Table 1
A comparison between optimal solutions to the SCD and SCD-CVaR models with various r

SCD SCD-CVaRa=0.50 S

CVaR 6,648,481 7,080,578 7
VaR 5,945,612 6,673,971 6
Avg. expected total cost 6,587,944 6,790,520 6
Avg. fixed cost 5,210,752 5,694,548 5
Avg. expected untainted delivered cost 592,174 632,791 6
Avg. expected tainted penalty cost 755,792 403,878 3
Avg. expected inspection cost 26,185 52,314 5
Avg. expected discard cost 3041 6988 7
Avg. no. of selected facilities 3.4 3.8 3
4. Computational experiments

This section presents numerical studies on both the SCD and the
SCD-CVaR models, as outlined above, in order to highlight the dif-
ferences between risk-neutral and risk-averse policies.

The optimization problem is modeled by using the AMPL math-
ematical programming language and solved with Gurobi 4.5.6.
Each problem instance is solved on four cores (threads = 4) of a Dell
Optiplex 980 with an Intel Core i7 860 Quad @ 2.80 GHz and 16 GB
RAM. The operating system is Windows 7 Enterprise 64-bit. In our
computational analysis, we terminate Gurobi when the CPU time
limit of 14,400 s is reached.

All of our computational experiments are based on the data that
was generated from the procedure presented in Section 3. We con-
sidered ten data instances for a supply chain network consisting of
five facilities and five consumers. We selected five levels of a: 0.50,
0.65, 0.75, 0.85 and 0.95. Results comparing the derived solutions
from the SCD model with those from the SCD-CVaR model, under
various risk-level values, are summarized in Table 1. Note that all
10 data instances were solved to optimality for both the SCD and
the SCD-CVaR models.

Our observations indicate that higher values of a imply a
higher level of risk-aversion and a narrower range of worst-case
scenarios. From Table 1, it can be observed that the average
expected cost, VaR, and CVaR increase with associated increases
to a values. This is because, as a decision-maker or a supply chain
designer becomes more risk-averse, he or she is willing to accept
a higher total cost in order to avoid more worst-case scenarios.
Hence, our derived SCD-CVaR model restricts the number of
scenarios that exceed VaR, and the right-hand tail cost will
be minimized at the price of increasing the total expected cost
(see Fig. 1).

In Table 1, we have divided the expected total cost into the fixed
cost, expected untainted delivered cost, the expected tainted pen-
alty cost, the expected discard cost, and the expected inspection
cost. As per the results obtained, the fixed cost increases with
respect to increasing risk-level a. The reason for this increase is
that, for higher values of risk-level, the average number of selected
facilities gradually increases. However, in SCD-CVaRae{0.85,0.95},
even though the average number of selected facilities is identical,
the corresponding average fixed costs are different. The difference
is because increasing the risk-level a also leads to the selection of
different types of facilities. In Fig. 2, we show the output for one
data instance in order to illustrate this observation. We notice that
the number of selected facilities and/or the type of the facility
changes with respect to the value of a. For instance, in the SCD-
CVaRa=0.95 model, Facility 1 is not selected. In contrast, in the
SCD-CVaRa=0.85 model, Facility 5 is not selected, which is a facility
with a higher fixed cost.

Another key observation from Table 1 (also illustrated in Fig. 3)
is that becoming more risk-averse results in remarkable increases
in the cost of shipping untainted products to consumers. This
implies that capacity allocation decisions change by varying a.
isk-levels.

CD-CVaRa=0.65 SCD-CVaRa=0.75 SCD-CVaRa=0.85 SCD-CVaRa=0.95

,226,298 7,382,727 7,540,617 7,797,082
,850,485 6,992,332 7,335,176 7,587,006
,910,247 6,972,212 7,214,093 7,250,803
,861,480 5,943,178 6,247,912 6,257,492
43,899 652,651 681,041 687,738
39,150 304,849 204,321 228,408
8,365 63,418 68,202 68,566
353 8117 8685 8599
.9 3.9 4.1 4.1
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Fig. 3. Expected costs for various risk-level values.
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Fig. 2. Fixed cost vs. reliability on facility selection at various risk levels.
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We observe growth in the cost of inspection with respect to level of
risk aversion level particularly for a e {0.85, 0.95}. This increase
noticeably indicates that increasing a leads to conducting more
inspections in the facilities. Additionally, a remarkable reduction
in the expected penalty cost of shipping tainted products is notice-
able. Given Eqs. (5)–(8), we notice that klcs and dlcs are auxiliary
decision variables that depend solely on variables plcs and zls. The
implementation of more inspections at the facilities and larger val-
ues of shipping untainted products results in the discarding of
more tainted products and, subsequently, a reduction in the num-
ber of tainted products shipped. Furthermore, inspection decisions
at the facilities under different scenarios change as the value of a
changes.

As an example, let us consider Scenario 24, where all facilities
are in State 1, except for Facility 4, and Scenario 32 where all facil-
ities are in State 1. As illustrated in Fig. 4, in the SCD model for Sce-
nario 24, inspection is only implemented in Facility 5, whereas in
the SCD-CVaRa=0.95, inspection is implemented in Facilities 3 and
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Scenario 32
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Fig. 4. Inspection decisions at the facilities under different scenarios and various risk levels.
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5. In the SCD model and for scenario 24, Facility 3 utilizes 99% per-
cent of its capacity (consumers 3, 4, and 5 use 27%, 32%, and 40%).
In the SCD-CVaRa=0.95model, Facility 3 utilizes 84% percent of its
capacity (consumers 2 and 5 use 33% and 81%, respectively). Fur-
thermore, in Scenario 32, inspection is performed in all selected
facilities for SCD-CVaRa=0.95, whereas Facility 5 is the only facility
that is inspected in the SCD model. In the SCD model and for Sce-
nario 32, Facility 3 utilizes 100% percent of its capacity (consumers
2, 3, and 4 use 44%, 15%, and 41%, respectively). In the SCD-
CVaRa=0.95model, Facility 3 utilizes 80 percent of its capacity (con-
sumers 3, 4 and 5 use 23%, 41%, and 16%, respectively).

Finally, recall that increasing a leads to a higher average num-
ber of selected facilities. This can be justified because a risk-averse
decision-maker provides more capacity (by selection of more facil-
ities) in order to be able both to perform more inspections and to
discard more tainted products and still satisfy the total demand.
The most salient conclusion that can be drawn from these results
is that the risk-averse policy results in different strategic and tac-
tical decisions compared to the risk-neutral policy, which is prob-
ably a more suitable design for a pharmaceutical supply network.
However, we should note that the magnitude of change is also
highly dependent upon the value of the risk level. In the next sec-
tion, we utilize a sensitivity analysis for the further investigation of
this subject.

4.1. Sensitivity analysis

Our computational experiments display the sensitivity of the
solution relative to the various values of the risk level (i.e., a). In this
section, we analyze the SCD and the SCD-CVaR outcomes for various
settings of some of the parameters in order to provide insights that
can assist decision-makers. We compare the results of our sensitiv-
ity analysis to the results obtained in our computational analysis,
Table 2
Parameter setting for sensitivity analysis.

Parameter Range (s) of the parameters

Fixed cost of selecting a facility (fl) U[300 k, 500 k], U[2 M, 3 M]
Fixed cost of implementing an inspection (nl) U[25 k, 50 k], U[75 k, 150 k]
Cost shipping tainted products (olc) U[5 k, 10 k], U[15 k, 30 k]
which we refer to as the ‘‘base case.’’ We also perform the single-fac-
tor experiment in order to observe the effect of each cost factor. To
make the results more interpretable and for the sake of simplicity,
we consider the SCD model along with SCD-CVaRae{0.50,0.85} in our
sensitivity analysis. Table 2 presents the settings for each parameter
used in the sensitivity analysis.

4.1.1. Varying fixed cost of selecting a facility (fl)
In this section, we examine the sensitivity of the fixed cost. For

this purpose, let us first assume that our facilities are small-size
facilities where the fixed cost of selecting a facility is drawn from
a discrete uniform distribution between 300,000 and 500,000.
We also consider larger size facilities where the fixed cost of select-
ing a facility is drawn from a discrete uniform distribution between
2,000,000 and 3,000,000. Note that we keep all other parameters
constant. We use the same ten data instances that were previously
described, changing only the fixed cost of selecting a facility.
Table 5 summarizes the results. Note that the numbers in paren-
theses denote the reduction or growth in the costs compared to
values obtained in the ‘‘base case.’’

For the case where fl e U[300 k, 500 k] , the average number of
selected facilities increases as the fixed cost decreases in both
the SCD model and SCD-CVaR model. We do not observe a notable
change in the average expected cost of shipping untainted prod-
ucts. We observe a remarkable reduction in both the average
expected penalty cost of shipping tainted products and the average
expected cost of discarding tainted products, particularly in the
SCD and SCD-CVaRa=0.50models. This is a consequence of an
increase in the average number of selected facilities as well as
the implementation of more inspections at these facilities. For
SCD-CVaRa=0.85, we observe an increase in the average expected
cost of inspection and a slight change in the average expected cost
of discarding tainted products. We observe that the ability to
reduce the fixed cost of selecting a facility results in increasing
the average number of selected facilities and subsequently imple-
mentation of more inspection at the facilities particulary in the
risk-neutral policy.

We notice that the average number of selected facilities drasti-
cally decreases when fl e U[2 m, 3 m] . We also observe a consider-
able increase in the average expected penalty cost of shipping
tainted products and a decrease in the average expected cost of



62 A. Madadi et al. / Computers & Industrial Engineering 78 (2014) 55–65
discarding tainted products, which are the consequence of consid-
erable reduction in the implementation of inspection at the facili-
ties. The reason for these changes is because of the reduction in the
average number of selected facilities, which causes the decrease of
the available capacity. Hence, the inspection at the facilities is
refused and the tainted products are not discarded in order to pro-
vide enough capacity to be able to satisfy the total demand of con-
sumers (i.e., to satisfy constraint set (9)). As a result, we observe
that higher fixed costs of selecting a facility results in a reduction
in implementation of inspection at the facilities and subsequently,
increased quantities of tainted products reaching consumers.

4.1.2. Varying fixed cost of implementing an inspection (nl)
As shown in Table 6, for nl e U[25 k, 50 k], despite some slight

variations, we observe that average fixed cost, average expected
penalty cost of shipping tainted products, and average number of
selected facilities are all insensitive to the change. In the SCD and
SCD-CVaRa=0.50 models, we note that while the inspection cost
decreases considerably, the average discard cost increases and
the average expected penalty cost of shipping tainted products
decreases, which is more considerable in the SCD-CVaRa=0.50

model. We also note an increase in the average expected cost of
discarding tainted products which implies that the reduction in
cost of implementing inspection results in more inspections being
performed, as would be expected.

For nl e U[75 k, 150 k], we observe a reduction in the number of
selected facilities as a increases. This reduction is also valid when
compared to the base case and the case where nl e U[25 k, 50 k] .
We observe that, for high inspection cost cases and also for higher
values of a, the SCD-CVaR model tends to select more reliable facil-
ities, whereas for lower inspection costs, the tendency is toward
selecting facilities with larger capacities. Hence, we observe lower
fixed costs for nl e [75 k, 150 k] compared to the base case and also
nl e [25 k, 50 k] . The corresponding analysis is presented in more
detail in Section 5. The results also show a reduction of inspection
implementation in both the SCD and SCD-CVaRa=0.50 models and
26 percent and 11 percent decreases in the average expected costs
of discarding tainted products for a = 0.50 and a = 0.85 , respec-
tively. This reduction results in a nearly six percent increase in
the average expected penalty cost of shipping tainted products,
which is still 56 percent less than what we observe for a = 0.50.
The obtained result indicates that managers and decision-makers
should either maintain inspection costs at the lowest possible
value or become more risk-averse when the cost of inspection
implementation is high.

4.1.3. Varying penalty cost of shipping tainted products (olc)
Table 7 reports the relative differences in the optimal cost

expectations and the average number of selected facilities with
respect to changes in the penalty cost of shipping tainted products.
For olc e U[5 k, 10 k] , there is a considerable reduction in the aver-
age number of selected facilities for both SCD-CVaRa=0.50 and SCD-
CVaRa=0.95. For the SCD model, the average number of selected
facilities is insensitive to the change. We also notice a remarkable
reduction in the inspection cost and the average expected discard
cost, particularly in the SCD and SCD-CVaRa=0.50 models. This
reduction implies the implementation of fewer inspections at the
facilities. These observations indicate that the use of a low penalty
cost for shipping tainted products results in decisions that do not
support the detection of tainted materials nor the selection of
enough facilities to protect against requiring shipping tainted
products.

For olc e U[15 k, 30 k]], we observe a notable increase in the
number of selected facilities in the SCD and SCD-CVaRa=0.50 mod-
els. We also notice increases in the inspection cost and the average
expected discard cost in the SCD and SCD-CVaRa=0.50 models. How-
ever, in the SCD-CVaRa=0.95 model, the average number of selected
facilities and the average expected penalty cost of shipping tainted
products are both insensitive to the change. The results decidedly
indicate that decision-makers should consider the high penalty
cost of shipping tainted products when dealing with both the
risk-neutral policy and the risk-averse policy. Our result also sup-
ports the position that managers and decision-makers should
avoid considering a low penalty cost for shipping tainted products
when they are willing to be highly risk-averse.
5. Predictive modeling

In this research, we will perform predictive modeling based on
the SCD and SCD-CVaR models. Given our computational analysis,
we noticed that in some circumstances and for some parameters, it
may be difficult to predict or determine which facilities are
selected or unselected; it may also be difficult to interpret the out-
put of the model. We perform a regression analysis in order to
identify the factors for predicting the selection of a facility in the
SCD and SCD-CVaR frameworks at various risk levels and to ana-
lyze relationships among variables. The second purpose for con-
ducting a regression analysis is to assess the likelihood of
selection for each individual facility at various risk levels. Hence,
we utilize logistic regression method in this study.
5.1. Description of the data source

We use a set of continuous predictor variables that are hypoth-
esized to be associated with the dependent variable, which is the
status of a facility (selected/unselected). The predictors for facility
l include the following: the reliability of the facility (Hl), the fixed
cost of opening the facility (fl), the capacity of the facility (jl), the
fixed cost of implementing an inspection at the facility (nl), the
total demand of the consumers (b =

P
ceCbc), the fraction of tainted

products at the facility l (qls); the fraction of tainted products at
facility l after inspection (rls); and risk level (a). We will investigate
the impact of these factors on the status of a facility. The status of a
facility is represented by an indicator variable defined as follows:
yl ¼
1; if facility l is selected; l 2 L

0; else:

�

We use 86 data files for a specific case containing five facilities and
five consumers to illustrate the predictive modeling. We consider
seven levels for the risk level a: 0, 0.50, 0.65, 0.75, 0.85, 0.95, and
0.99. In total we will have 3010 (86 � 5 � 7) observations. Given
the procedure we conducted in order to generate the test data in
Section 3, multicollinearity exists between some of the independent
variables. For instance, the capacity of a facility and the fixed cost of
opening a facility are highly correlated (Pearson’s correla-
tion = 0.71) as is the fraction of tainted products at facility l and
the fixed cost of implementing an inspection at a facility (Pearson’s
correlation = 0.73). To overcome this issue of multicollinearity, we
remove the fixed cost (fl) variable from our model and we combine
capacity and total demand of consumers (b =

P
ceCbc), which we

define as Cl;1 ¼ jlP
c2C

bc
. This ratio indicates the portion of the total

demand that can be supplied by facility l. In addition, we remove
inspection cost from our model and consider Cl,2 = 1 � (ql � rl). This
fraction indicates the maximum percent of untainted products that
we can expect from facility l after performing inspection. Therefore,
we consider a, Hl, Cl,1, and Cl,2 as our independent variables. In the
next section, we discuss our regression model.
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5.2. Regression model description

The predictive model in this research was implemented in the
software package R. The regression coefficient for risk level a is
highly significant (p-value < 0.0001). The maximum percent of
untainted products, C2, is significant (p-value = 0.0006). We also
notice that reliability of the facility, H, and it is interaction with
the risk level, aH, are significant (with p-value = 0.004 and p-
value = 0.03, respectively).

We also consider a model with only significant predictors by
employing a stepwise selection procedure. The Stepwise Logistic
Regression (SLR) method allows the model to be assessed as it is
being built. In SLR, predictor variables are selected for inclusion
or exclusion from the regression model in a sequential manner
(see Cohen (2003) for details). We considered the interaction
between the independent variables to describe how the effect of
a predictor variable o facility selection depends on the level/value
of other predictor variables. The smallest Akaike Information Crite-
rion (AIC) approach was used to select the best model.

The coefficients from the estimated regression model after per-
forming the stepwise procedure are summarized in Table 3. We
Table 5
Comparison between optimal solutions to the SCD and SCD-CVaR models at varying fixed

SCD

fl e [300 k, 500 k] fl e [2M, 3M]

CVaR – –
VaR – –
Avg. expected total cost 2,538,062 10,514,286
Avg. fixed cost 1,642,266 8,994,122
Avg. expected untainted delivered cost 587,447 597,569
Avg. expected tainted penalty cost 232,563(�70%) 907,643(20%)
Avg. expected inspection cost 68,523(162%) 13,203(�50%)
Avg. expected discard cost 7262(138%) 1748(�42%)
Avg. No. of selected facilities 4.1 3.5

Table 4
Likelihood of selection of facilities.

Facility Reliability C1 C2 a = 0.05 a =

Probability Logit Pro

3 0.6 0.11 0.84 0.127 �1.93 0.0
4 0.56 0.2 0.75 0.954 3.04 0.8
1 0.87 0.13 0.81 0.025 �3.68 0.0
2 0.84 0.29 0.8 0.826 1.56 0.8
5 0.56 0.35 0.72 0.999 7.26 0.9

Table 3
Logistic regression model result after performing SLR.

Research model
predictors

Logistic
coefficients

Standard
error

z value
(significance
level)

Pr(>|z|)

(Intercept) 40.36 8.30 4.86*** 0.00000
a �15.08 3.53 �4.27*** 0.00002
H �35.94 8.56 �4.19*** 0.00003
C1 �18.96 23.20 �0.81 0.41390
C2 �46.41 10.11 �4.59*** 0.00000
aH 9.45 2.42 3.91*** 0.00009
aC2 9.71 4.85 2.00* 0.04520
HC2 29.69 9.74 3.04** 0.00230
C1C2 60.15 27.91 2.15* 0.03120

Significant codes: ‘.’p < 0.1; AIC = 1285.
* p < 0.05.

** p < 0.01.
*** p < 0.001.
observe that performing a stepwise procedure resulted in of the
removal of several interaction terms as well as reducing the AIC
by nearly three units. Given the logistic coefficients in Table 8,
the resulting regression model with interaction is:

bY l ¼ 40:369� 15:08a� 35:94H� 18:96C1 � 46:41C2

þ 9:45aHþ 9:71aC2 þ 29:69HC2 þ 60:15C1C2: ð23Þ

We present an example here in order to clarify the interpreta-
tion of our regression model. Consider a (shown in Table 3) that
is statistically significant (p-value < 0.0001). From Eq. (23), it can
be shown that the change in the logit (i.e., log odds) with a 0.25
unit increase in a when other variables are held constant is

Ŷ l;Da ¼ Ŷaþ0:25
l � Ŷa

l ¼ �3:77þ 2:36Hþ 2:43C2: ð24Þ

Eq. (24) implies that increasing a leads to a reduction in the proba-
bility of selection if H and/or C2 go down. We perform some predic-
tions in the next section to evaluate this further.

5.3. Prediction

To evaluate the predictive strength of the model based on the
estimated logistic coefficients in Table 3, we use observations for
a set of facilities consisting of five facilities in our prediction. We
consider two levels of a i.e., a e {0.50, 0.95}. The data and the result
of the prediction are presented in Table 4. The results in Table 4
indicate that reliability has substantially impacts the selection of
the facilities. Another notable observation is that Facility 5 has
the lowest reliability but the largest capacity. The likelihood of
selecting Facility 5 when a = 0.50 is 0.995. However, after increas-
ing the value of a to 0.95, the likelihood of selection decreases to
0.965. This decline indicates the selection of more reliable facilities
in the risk-averse policy. We can therefore state that there is a
higher likelihood of selection for more reliable facilities as well
as facilities with higher C2 in the risk-averse model. These results
may enable facilities to analyze their situation and compare it with
other facilities (competitors) as they attempt to change their
behaviors in order to increase their likelihood of selection. The
results can also assist decision-makers to identify and analyze fac-
tors for predicting the selection of a facility. We believe that other
cost.

SCD-CVaRa=0.50 SCD-CVaRa=0.85

fl e [300 k, 500 k] fl e [2M, 3M] fl e [300 k, 500 k] fl e [2M, 3M]

2,699,462 11,185,483 2,986,515 12,304,789
2,441,975 10,398,995 2,769,522 12,016,346
2,575,433 10,541,546 2,580,181 11,156,932
1,675,595 9,021,022 1,678,277 9,877,415
627,086 619,172 665,388 682,336
191,559(�53%) 884,026(118%) 152,864(�26%) 562,063(146%)
73,607(41%) 15,126(�70%) 74,960(10%) 30,200(�55%)
7587(9%) 2201(�68%) 8690(0.1%) 4918(�43%)
4.1 3.5 4.2 3.6

0.50 a = 0.75 a = 0.95

bability Logit Probability Logit Probability Logit

78 �2.47 0.059 �2.76 0.047 �3.00
74 1.94 0.790 1.32 0.697 0.83
38 �3.24 0.048 �2.99 0.057 �2.80
61 1.83 0.878 1.98 0.891 2.10
97 5.97 0.995 5.26 0.991 4.68



Table 6
Comparison between optimal solutions to the SCD and SCD-CVaR models at varying inspection cost.

SCD SCD-CVaRa=0.50 SCD-CVaRa=0.85

nl e [25 k, 50 k] nl e [75 k, 150 k] nl e [25 k, 50 k] nl e [75 k, 150 k] nl e [25 k, 50 k] nl e [75 k, 150 k]

CVaR – – 6,374,835 7,156,224 5,959,766 7,641,170
VaR – – 5,980,693 6,472,782 5,777,634 7,355,175
Avg. expected total cost 6,569,842 6,620,171 6,778,385 6,631,208 7,170,790 6,875,733
Avg. fixed cost 5,210,752 5,210,752 5,728,242 5,438,567 6,247,912 5,900,643
Avg. expected untainted delivered cost 592,205 592,152 627,905 628,970 673,660 672,033
Avg. expected tainted penalty cost 751,566(�0.6%) 775,485(3%) 389,182(�3%) 500,763(25%) 203,685(�0.3%) 217,280(6%)
Avg. expected inspection cost 12,265(�52%) 38,865(48%) 26,052(�50%) 57,763(10%) 36,790(�45%) 78,032(13%)
Avg. expected discard cost 3054(0.4%) 2942(�4%) 7003(0.4%) 5144(�26%) 8743(0.7%) 7745(�11%)
Avg. No. of selected facilities 3.4 3.4 3.8 3.6 4.1 3.9

Table 7
Comparison between optimal solutions to the SCD and SCD-CVaR models at varying shipping tainted cost.

SCD SCD-CVaRa=0.50 SCD-CVaRa=0.85

olc e [5 k, 10 k] olc e [15 k, 30 k] olc e [5 k, 10 k] olc e [15 k, 30 k] olc e [5 k, 10 k] olc e [15 k, 30 k]

CVaR – – 5,595,021 6,990,944 6,313,611 7,438,295
VaR – – 5,340,650 6,604,175 6,138,267 7,060,782
Avg. expected total cost 6,000,543 6,605,522 6,044,112 6,737,116 5,923,728 6,806,913
Avg. fixed cost 5,068,814 5,373,692 5,090,760 5,887,011 4,986,871 5,938,188
Avg. expected untainted delivered cost 582,557 485,849 614,505 516,871 622,027 559,015
Avg. expected tainted penalty cost 340,375 (�55%) 698,080(�8%) 326,791(�19%) 258,296(�36%) 298,379(42%) 232,984(14%)
Avg. expected inspection cost 7,971(�70%) 43,276(65%) 10,916(�79%) 67,946(30%) 15,086(�77%) 68,406(0.2%)
Avg. expected discard cost 826(�72%) 4625(52%) 1140(�83%) 6991(0.05%) 1365(�84%) 8421(�2%)
Avg. No. of selected facilities 3.3 3.7 3.3 4.0 3.4 4.1
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important implications can be achieved in practice through these
results in order to facilitate decision making process.
6. Conclusions and future research

In this paper, we presented a supply network design problem
with application in the pharmaceutical industry to hedge against
unreliability of capacity and prevent shipping of tainted materials
to the consumers. We studied a risk-neutral decision-making pol-
icy and a risk-averse decision-making policy. We characterized the
trade-off between the risk and cost, which provides several
insights on the impact of risk-aversion on the facilities’ optimal
decisions in a pharmaceutical supply chain. Our studies demon-
strated how strategic and tactical decisions change with respect
to the risk level. We found that an increase in the risk level a leads
to the selection of not only more reliable facilities but also a differ-
ent number of facilities. The risk-averse policy also resulted in
fewer worst-case scenarios as compared to the risk-neutral policy.
Our computations also revealed that becoming more risk-averse
resulted in remarkable increases in the cost of shipping untainted
products to consumers. A regression analysis was also employed to
identify the factors for predicting the selection of a facility in both
the risk-neutral and risk-averse policies.

The significance of this research is threefold. First, to the best of
our knowledge there is no currently available research to evaluate
the pharmaceutical (or healthcare) supply chain network design.
Secondly, there is also little prior research to date that investigates
supply chain risk within the context of the pharmaceutical supply
chain. As pharmaceutical availability and drug safety clearly are
key components to effective patient quality of care, our models
can assist supply chain designers enhance patient safety and qual-
ity of patient care. Furthermore, Insights into how our model
should be configured to avoid the risk of tainted products reaching
consumers are of interest to several types of supply chains such as
healthcare, pharmaceutical, cosmetic and beauty, and food and
dairy industries. Finally, the results also enable facilities to analyze
their situation and compare it with other facilities (competitors)
and change their behaviors in order to increase their likelihood
of selection.

There are some interesting future research extensions. An inter-
esting extension of the presented work is to include demand
uncertainty and/or seasonal demand as they exist in real world
pharmaceutical supply chain. Moreover, we assumed an inspection
and discard approach, which is not a valid assumption in some
supply chains like the automotive and electronics industries. This
assumption can be shifted to an inspection and fix (rework)
approach where defective products can be repaired after detecting.
Ultimately, we have considered instances that included five facili-
ties. However, experience from solving the models using commer-
cial software indicated that the number of facilities can
dramatically increase the computational time. We also think that
it is important to design and develop heuristic techniques to obtain
acceptable solutions to these larger size problems in reasonable
runtimes and with good solution quality.
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