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1. Introduction

Some supply disruptions are not only costly, but may have catastrophic consequences in spite of their low probability of
occurrence. Consider a supplier that begins sending tainted or contaminated products without awareness and the product
reaches the final consumers. This may cause late delivery or product shortage and in some supply chains, such as healthcare,
this disruption may put final consumers i.e., patients’ lives in danger. As an example, the disruption of a flu vaccine
manufacturer in Bristol, UK in 2004 resulted in disastrous consequences. The UK government stopped production when
U.S. regulators inspected a manufacturing plant and found evidence of bacterial contamination problems. This reduced
the US’s supply of the vaccine by nearly 50% during the 2004-2005 flu season (Everett and Baker, 2004). A healthcare supply
chain is also very susceptible to disruptions caused by contamination. Heparin, a widely-used blood-thinning medicine that
is made from pig intestines, was contaminated by an undetected outbreak of blue ear pig disease in China in 2008. This led to
81 patient deaths as well as hundreds of allergic reactions in the United States (Usdin, 2009). The investigation engaged
several government agencies, university researchers and a biotech company with a generic heparin under FDA review.
Although no one at the time knew what was causing the reactions, members of Congress concluded that the issue was
the result of “regulatory failure” (Usdin, 2009). In another supply chain disruption, a baby food producer who purchased
vitamin supplements from a Chinese supplier found out that the supplements were contaminated by cement (Lyles et al.,
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2008). This incident involved 22 Chinese and 10 global manufacturers and led to kidney problems and kidney stones in
Chinese babies, illustrating the result of poor or failed inspections by FDA or production facilities (Schoder, 2010).

A 2008 US Government Accountability Office (GAO) report indicated that in 2007, the FDA inspected approximately 8% of
foreign facilities and declared that, at that rate, it would take 13 years to inspect all such facilities (Benson, 2012). On the
other hand, inspection of raw materials is usually a signification portion of manufacturing costs whereas manufacturing
facilities are searching for cost-reduction opportunities (Green and Brown, 2009). As a result, while consumers may assume
all materials are inspected, some are either not inspected or are inadequately inspected.

These types of incidents indicate not all materials entering the supply chain can be inspected by regulatory agencies and
accentuate the need to consider risk of receiving contaminated materials in the design and planning stages. It is also vital to
contemplate risk of supply disruptions when designing a supply chain so that it can be responsive and resilient in the case of
an unplanned incident. However, managers, deceived by the small likelihood of these types of incidents, often tend to under-
estimate the impact of such mishaps.

The goal of this research is to design a single-period, single-product supply chain model with capacitated facilities to
hedge against the risk of supply quality disruptions and sending tainted materials to consumers. Inspired by the aforemen-
tioned incidents, we reduce (but do not completely eliminate) tainted materials by introducing producer-implemented
inspections. We also consider the loss of all or a significant fraction of the expected supply quantity due to contamination
or discarding tainted materials after implementation of inspection. In all cases, we assume some tainted materials are also
shipped to consumers. We, therefore, model the risk of shipping tainted materials with a penalty cost. In cases where reduc-
ing tainted materials is of the first priority, using a high penalty cost will cause the model to avoid it as much as possible.
When we inspect, we also incur costs related to inspection and the disposal of discovered tainted materials.

Typically, the decision making process dealing with supply chain disruptions involves both strategic and tactical consid-
erations (Drezner and Hamacher, 2004). Strategic decisions comprise decisions such as choosing which markets to serve,
from which suppliers to source, the location of facilities/suppliers, and how many suppliers to use. Tactical decisions include
decisions such as inventory management production planning (Drezner and Hamacher, 2004; Chopra and Sodhi, 2004).

Our model examines the strategic decision of facility selection and the tactical decision of capacity allocation among facil-
ities. Additionally, we consider the implementation of inspection at a facility as a tactical decision. This aspect of the work
was inspired by tragedies such as the heparin. If the risk of shipping tainted materials can be minimized prior to such trag-
edies, producers can decrease liability and improve consumer safety. Insights into how our model should be configured to
reduce the risk of tainted materials reaching consumers are of interest to several types of supply chains such as healthcare,
pharmaceutical, cosmetic and beauty, and food or dairy industries.

The objective of the model is to minimize the expected overall cost which is composed of the cost of selecting the facility,
shipping untainted materials, shipping tainted materials, inspecting the facility, and discarding tainted materials. We formu-
late this problem using a two-stage stochastic mixed-integer problem. A number of researchers address various solutions of
two-stage stochastic problems in the literature such as Bender’s Decomposition (MirHassani et al., 2000), Lagrangian relax-
ation (Daskin et al., 2002), or L-shaped methods (Laporte et al., 1994). However, while this approach may allow for exact
solutions in some situations, it can be very challenging to draw concrete analytical insights from such models and to obtain
good solutions for large instances within a limited time frame (see Santoso et al., 2005) since the problem is a special case of
the two-stage stochastic capacitated facility location problem which is NP-hard (Doerner et al., 2007; Shapiro, 2008). Based
on our experience in solving various size problems using commercial software in this paper, we show that the number of
facilities used have a significant impact on the solution time. As a result, we develop several heuristics and a metaheuristic
approach i.e., simulated annealing, to efficiently solve and handle large size problems.

The paper is organized as follows. In Section 2, the problem description and the mathematical formulation are discussed.
In Sections 3 and 4, the solution procedure and data generation method are presented, respectively. Computational results
are discussed in Section 5. Finally, Section 6 presents conclusions and future extensions.

2. Problem description and mathematical formulation
2.1. Description

The earliest work in supply chain design was developed by Geoffrion and Graves (1974). They introduced a multi-
commodity logistics network design model for optimizing finished product flows from plants to distribution centers to final
consumers. Based on this work, a large number of optimization-based approaches have been proposed for the design of
supply chain networks. These works have resulted in significant improvements in the modeling of these problems as well
as in algorithmic and computational efficiency but they all have assumed that the design parameters for the supply chain
are deterministic (Drezner and Hamacher, 2004; Vidal and Goetschalckx, 1997; Demirtas and Ustiin, 2008; Brandeau and
Chiu, 1989; Caserta and Rico, 2008; Hinojosa et al., 2008). Unfortunately, critical parameters such as consumer demand,
supply capacity are generally uncertain. Therefore, traditional deterministic optimization is not suitable for capturing the
behavior of the real-world problem.

The significance of uncertainty has encouraged a number of researchers to address stochastic parameters in their
research. Most of the stochastic approaches for supply chain design only consider tactical level decisions usually related
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to demand uncertainty (see Agrawal and Seshadri, 2000) while supply uncertainty is often ignored and supply capacity
assumed to be unlimited (see Owen and Daskin, 1998 for more details). For instance, Santoso et al. (2005) utilized a sto-
chastic programming approach for addressing demand uncertainty in supply chain design. Tsiakis et al. (2001) and Alonso-
Ayuso et al. (2003) also considered a two-stage stochastic programming model for supply chain design under demand
uncertainty. Qi and Shen (2007) introduced an integrated supply chain design model that with unreliable supply where
capacity is infinite. Shen et al. (2008) addressed a facility location problem in which some uncapacitated facilities are sub-
ject to failure.

In Fig. 1 we provide a hypothetical supply chain with an initial assignment of consumers to facilities, as well as suppliers
to facilities. Three facilities were selected and the capacity was sufficient to fulfill all the demand of all the consumers.

In some cases, facilities can ship poor quality items to consumers due to tainted raw material received from suppliers. In
Fig. 2, a scenario with product quality disruptions at two facilities is presented.

Once inspection is implemented in a facility, a portion of tainted items is discarded and fewer tainted items are delivered
to the consumers. However, discarding tainted items might result in consumer demand being unsatisfied due to insufficient
capacity. Then, the unmet demand can be fulfilled by adding another facility at a cost, as illustrated in Fig. 3.

2.2. Mathematical model

We utilize a mixed-integer stochastic programming model that is formulated as a two-stage optimization problem. The
selection of the facilities is considered at the first stage and modeled as a binary decision. The second-stage decision variables
include the binary inspection decisions at each facility as well as the actual capacity allocation, the penalty cost shipping of
contaminated or tainted materials to manufacturers due to quality problems which cause disruptions at all or some of facil-
ities, and finally cost of discarding tainted materials after implementation of inspection.

To deal with the uncertainty in the second stage, a scenario-based modeling approach is proposed, which has been widely
used in stochastic programing problems (Shapiro, 2008; Alonso-Ayuso et al., 2003). Let scenario s denote an event where all,
some or none of the facilities “fail” (i.e., have a quality disruption). Then ps can represent the probability of occurrence for
scenario s. We also provide an example of the role of inspection, using notation that is presented in our formulation. Suppose
that under a particular scenario s, the extent of tainting at facility [ is given by g;s = 0.20 and this fraction can be reduced to
s =0.05 after implementation of inspection. This means that for every 100 items produced at facility I/, 100q; = 20 are
tainted. If no inspection is used, these 20 tainted items will be shipped to consumers. If inspection is used, 15 of these 20
tainted items will be detected and discarded (which indicates the loss of supply quantity), while k;.; = 100r;; = 5 of them will
remain undetected and be shipped to consumers.

Given a finite set of scenarios, with associated probability p; for scenario s, we can present a deterministic equivalent of
the Supply Chain Design (SCD) model. We first summarize the complete notation for the SCD.

Sets

C  The set of consumers, indexed by ¢

L  The set of candidate facilities, indexed by [
S The set of realized scenarios, indexed by s

Parameters

fi Fixed cost of selecting facility [

k;  Capacity of facility [

b. Total demand of consumer c

n;  Fixed cost of implementing an inspection at candidate facilityl

qis Fraction of tainted materials produced at facility [ in scenario s

rs  Fraction of tainted materials produced at facility [ after inspection (we assume ;s > ) in scenario s
Jic  Unit cost of shipping untainted material from facility | to consumer ¢

0, Unit penalty cost for shipping tainted material from facility [ to consumer ¢

Ve Unit cost of discarding tainted material (after inspection) at facility I originally destined for consumer ¢
ps  Probability of occurrence for scenario s

Decision Variables
X = { 1, if facili‘ty [ is selected,
0, otherwise

2, = { 1, if inspgction is implementedat facility [ in scenario s,

s 0, otherwise
Pis Amount of materials shipped from facility [ to consumer c in scenario s
ks Amount of tainted materials produced at facility I intended to be shipped to consumer c in scenario s
dis Amount of tainted materials discarded at facility [ intended to be shipped to consumer c after inspection in scenario s

)
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Suppliers (Selected) Facilities Consumers
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Fig. 1. Initial demand allocation (before disruption).
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Fig. 2. Shipping tainted materials to consumers after disruptions (no inspection).
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Fig. 3. Reduction of delivered tainted materials (after inspection).
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We now present the deterministic equivalent of the formulation as:

SCD) min w4 Yp, (zzw Caope) + S ok + 3 edes + z) 1)

leL seS leL ceC leL ceC leL ceC leL
s.t. 2[(1 — Qis)Dies + Kies + dis] < Kixi, VleLseS )
=
kies + dies = qiiPies;, V€ €C,lel,seS (3)
kies — Tispies <M(1—25), VceClelseS 4)
dis — (qis — Tis)Pies < M(1 —2z55), VceClelseS (5)
dis <M(zi5), VceClelseS (6)
lz:[(l — qis)Pies + Kis) =be, VceCseS (7)
cl
zs<x, VleLsesS (8)
kics, dics, s 2 0, VceCillelseS 9)
z,€{0,1}, VieLseS (10)
x€{0,1}, Viel (11)

The objective function (1) in the first stage problem is the sum of fixed cost of selecting facilities. The second stage con-
sists of four distinct terms. The first term (3., > c4ic[(1 — qis)Pis]) Tepresents the expected transportation cost of shipping
untainted materials. The second term (3 je;> cecOickics) and the third term (37e1> cec)icdics) represent the penalty cost of sup-
plying tainted materials for the consumers and the cost of discarding tainted materials, respectively. Finally, the last term
(>"renizis) is the cost of inspection at all facilities.

Constraint set (2) requires a facility to be open if any portion of consumer demand is served from the facility. In addition,
it ensures that the total consumer demand assigned to any facility cannot exceed the facility’s capacity. Constraint sets (3)-
(6) together calculate the amount of tainted materials that is shipped to the consumer. Hence, without inspection (when
zis = 0), constraint set (6) implies that di; =0 and given constraint set (3), all of the tainted materials reach the consumer.
However if inspection is implemented, constraint sets (4) and (5) imply that only materials passing inspection will be
shipped to the consumer. The constant M is a big number and in our model we have used M =3 f;. Constraint set (7)
requires that the demand of every consumer is met. Constraint set (8) implies that inspection can be applied to only the
selected set of facilities. Constraint set (9) requires that ki, dis and p, are positive values, and constraint sets (10) and
(11) place binary restrictions on variables z;; and x;.

3. Solution procedure
3.1. Constructive heuristics

We present a few constructive (greedy) heuristics in this section. In constructive algorithms, we start from an empty solu-
tion and construct a solution by assigning values to one decision variable at a time, until a complete solution is generated
(Talbi, 2009). Constructive algorithms are popular techniques as they are simple to design and also they are good choices
for large instances. However, the performance of constructive algorithms may be low as well. Therefore, we also develop
improvement algorithms to improve the quality of the solution achieved by constructive algorithms. In our improvement
algorithm, we start with a complete solution (i.e., a constructive algorithm solution) and transform it at each iteration using
some search operators to hopefully find a better solution. We refer the interested reader to Sridharan (1995) and Cornuejols
et al. (1991) for a comprehensive review of the heuristic approaches to solve these types of problems.

In our solution procedure, we first determine the set of selected facilities, x. We next determine z;; by using one of the
heuristics presented in this section. Let X;,z; be the fixed and known values of x; and z;, respectively. Eq. (1) reduces to a
capacitated transportation problem, which is relatively easy to solve. We call this model SCD-Sub, and its formulation is sta-
ted as follows:

[SCD_SUb] min Zps (ZZ;“IC[(‘I - qls)plcs] + ZZOICI{ICS + Zzylcdlfs> (12)

seS leL ceC leL ceC leL ceC
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sty (1= Q)P + kis + dis] <%, VIELSES (13)
kis + dis = qpis, VceClel,seS (14)
Kies — (T1s)Pies < M(1 = Zi5), VceC,ilelsesS (15)
dis — (Qis — s )Pis < M(1—25), VceClelseS (16)
dies <M(zs), VceClelseS 17)
> (1 =qpes + kis) =be, VceCses (18)
Kies, dis, Dis = 0, VceClelseS (19)

Note that ki and d.s are auxiliary decision variables that depend solely on p,; and z;. Given the fact that zj is already
determined and fixed and by using Eqs. (14)-(17), we can rewrite the SCD-Sub as follows:

min Zps <ZZ{;LIC(1 = i) + 0icis(1 — Zis) + OicTisZis + Vi (1 — Zis) (s — rls)}pk;) (20)

seS leL ceC

s.t. (13)—(19)

Our constructive heuristics operate in three stages. In stage one, we determine the set of selected facilities. In stage two,
we determine zj, and finally in the last stage, we solve SCD-Sub in two phases. In the following, all three stages are
presented.

3.1.1. Stage one methods
We develop three constructive heuristics to determine the set of selected facilities as follows:

e Basic Greedy Heuristic (BGH): One way to determine vector x is to simply open all the facilities. Therefore, we have
x;=1,Vle L. The computational complexity of BGH is O(n) in the number of facilities.

o Selective Greedy Heuristic (SGH): In this method, we evaluate the selection cost of every candidate facility and we first
select the facilities with the least total cost of selection until constraint (7) is satisfied. We start with an empty set for
selected facilities. In Step 1, we calculate the expected available capacity of a facility. Assume that a facility operates with
full capacity with probability y; and let k; denote the random variable for the available capacity where p(k; = Kk;) = y;
and p(ic;=(1-q))K;) = (1 —y). Therefore, the expected available capacity of facility | is calculated by
E(ic) = yxi+ (1 — x)(1 — q))i;. We set y; equal to the probability of a facility producing perfect items. The total cost
of selecting a facility is estimated in Step 2. The estimated total cost includes the fixed cost of selecting a facility plus
the average of transportation cost of shipping untainted materials plus the average penalty cost of supplying tainted
materials, and the average cost of discarding tainted materials. These average values are calculated over all customers.
To select the facilities based on least total cost of selection, facilities are sorted in increasing order of total costs in Step
3. The computational complexity of SGH is O(nlogn) in the number of facilities. Steps are illustrated in Fig. 4.
Capacity-Based Greedy Heuristic (CBGH): In this method, we first start with an empty set of selected facilities. Then we
choose a facility from the set of remaining candidates that reduces the total demand of the consumers (3 ccb.) the most.
Steps are illustrated in Fig. 5. The computational complexity of CBGH is O(nlogn) in the number of facilities.

3.1.2. Stage two methods
Once the selected facilities have been set, we determine zj for each scenario. We develop the following construction
heuristics:

e Failed Scenario Inspection Heuristic (FSIH): Consider S, for each L as the set of scenarios where facility | produce prefect
items and S/, VI € L as the set of scenarios where facility | will produce tainted materials where S; U S = S. We define z
.1, seS/Axy=1VlelLVseS
as follows: z; = {o, seSvx=0vlelVseS"
The definition of z;; means that we perform inspection for all facilities that are selected in stage one and produce tainted
materials. The computational complexity of FSIH is O(n) in the number of facilities.

e Greedy Inspection Heuristic (GIH): In this method, we define a desired shipping untainted level A(4 € (0, 1]), where
(4)100% of the shipping materials to consumers must be untainted. Let us start with an empty set for z. Given a scenario
s where s € S/, the following relation should be satisfied >, [qixi%i(1 — zis) + Fisxikizis) < (1 — A)S" . cbc.Otherwise, we
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perform inspection until we reach the desired level of untainted materials Note that, we consider facilities in decreasing
order of maximum reduction in the fraction tainted materials or max {(q; - r;)|vl € L}. We consider 4 = 0.90 in our com-
putations. The steps are defined in Fig. 6, which is a O(nlogn) algorithm for each scenario s.

e Random Greedy Inspection Heuristic (RGIH): The basic idea of this method is to estimate how much we can save by
implementing inspection in a facility. We first evaluate ¢, the amount of savings for each individual facility. This is
the ratio of how much savings can be obtained by preventing the shipment of tainted materials to the cost of implement-
ing inspection in the facility. If the savings are high enough, then inspection for a facility will be implemented. The steps
are defined in Fig. 7, which is O(nlogn) in the number of facilities.

3.1.3. Stage three methods

In this stage we solve SCD-Sub in two phases. In the first phase, we solve the transportation problem between selected
facilities and consumers. Initially, the unit transportation cost to the consumers (/;;) are ranked in an increasing order and
then the transportation amounts i.e., pi., are assigned considering the capacity limits of the selected facilities. In Fig. 8, a.
represents the demand of consumer c, and g; represents the capacity for facility L In the second phase, given the obtained
value for p,s, we simply compute the values of auxiliary variables ki and di. After p,s values are determined, and given
the values of z;; that are computed by one of the methods in stage two, we can calculate k. and di; by using Egs. (14)-
(17). Stage Three’s method is O(nlogn) in the number of facilities.

3.2. Improvement heuristics

In this section we develop improvement heuristics to improve the solution obtained from one of the heuristic methods
presented above. First, we present hill-climbing heuristic (HC) that begins with a feasible solution and seeks to improve upon
it. HC iteratively closes one facility if the facility is already selected and opens a facility if a facility is not selected. This iter-
ation enables us to generate a new neighborhood and explore if the new set of selected facilities provides a cheaper solution
or not. In order to maintain feasibility, only moves are allowed which provide enough capacity to satisfy the total demand of
the consumers. The details of this heuristic are shown in Fig. 9. HC’s time complexity depends on the use of FSIH, GIH or RGIH
and the number of iterations performed.

In the second improvement algorithm, we apply a Variable Neighborhood Search (VNS) to change the flows from facilities
to demands. The basic idea of VNS is to find a set of predefined neighborhoods to achieve a better solution. It explores either
at random or deterministically a set of neighborhoods to get different local optima and to escape from local optima (for gen-
eral pseudocode of VNS see (Glover and Kochenberger, 2003). The purpose of VNS is to minimize transportation cost for each
individual scenario, i.e., minimize Y, > ~(Ac[(1 — q;5)Pis)) by changing p values.

The neighborhood strategy that we apply is structured by randomly choosing a point in the transportation cost matrix.
The first step in our algorithm is the shaking step. At each iteration, an initial solution (p) is perturbed from the current
neighborhood in order to generate a new solution (u). For this purpose we identify the closed path leading to that point
which consists of horizontal and vertical lines as illustrated in Fig. 10. In order to generate a new solution, we move R units
from the chosen point and another point at a corner of the closed path and modify the remaining points at the other corners
of the closed path to reflect this move. Note that R is a random variable over the range of zero and the minimum value of the
four selected points. Note that the selected point is shown by *. The implemented VNS for our problem is illustrated in
Fig. 11.

3.3. Simulated annealing

Simulated Annealing (SA) is a metaheuristic approach inspired by nature. In this case, the process of a heated metal being
cooled at a controlled rate (annealed) to improve its physical properties is simulated. The method was popularized by the
work of Kirkpatrick et al. (1983) which continued the earlier work of Metropolis et al. (1953). The fundamental idea is to
allow moves resulting in solutions of worse quality than the current solution in order to escape from local optima (Talbi,
2009). Fig. 12 outlines the implementation of SA in more detail.

3.3.1. Defining initial temperature and cooling schedule

An important consideration in SA is to set the initial value of the temperature Ty. If the initial temperature is set very high,
the search may be relatively close to a random local search. Otherwise, if the initial temperature is very low, the search might
degenerate to an improving local search algorithm (Talbi, 2009) as the probability of accepting worse moves decreases too
quickly. Another important factor is cooling schedule. The choice of a suitable cooling schedule is crucial for the performance
of the algorithm. The cooling schedule defines the value of temperature T at every iteration.

The temperature T is decreased during the search process, thus at the beginning of the search the probability of accepting
uphill moves is high and it gradually decreases. As stated, the choice of an appropriate cooling schedule and initial value of
temperature are crucial for the performance of the algorithm. The cooling schedule defines the value of T at each iteration
k, Tis1 = R(Ty, k), where R(T, k) is a function of the temperature at the previous step and of the iteration number. In this paper,
we use one of the most common cooling schedule which follows a geometric law as Ty. = 0Ty, where 0 € (0, 1), which cor-
responds to an exponential decay of the temperature (Suman and Kumar, 2005). Furthermore, experience has shown that 0
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should be between 0.5 and 0.99 (see Talbi, 2009). Hence, we considered four values, 0 = 0.95, 0.90, 0.80 and 0.75; and we
obtained the best minimum regret in less computational time at 0 = 0.75.

An important consideration in SA is to set the initial value of the temperature Ty properly. There is a tradeoff between a
very high initial temperature and a lower one. The high temperature explores more of the solution space at the cost of
increased running time. For this research, we use acceptance deviation methods. In this method, the starting temperature
is computed by to using preliminary experimentations on each data set, where ¢ represents the standard deviation of dif-
ference between values of objective functions and t = —3/In(w) with the acceptance probability of &, which is greater than
30 (see Talbi, 2009). Finally, a sufficient number of iterations at each temperature should be performed. If too few iterations
are performed at each temperature, the algorithm may not be able to reach the global optimum. Given the presented formula
and after several experiments, we set the value for the initial temperature as T, = 8000.

3.3.2. Neighborhood selection

The manner in which a metaheuristic technique moves from one solution to its neighbor is a critical component. In our SA
algorithm the neighborhood is defined by using one the following neighborhood structures: (1) swapping one randomly
selected facility with another randomly selected facility (SA-swap), (2) selecting one more facility (SA-add), (3) closing
one selected facility (SA-remove), and finally (4) closing two facilities while selecting another two (SA-2swap). Note that
we apply the same neighbor strategy to determine z;s and afterward compute the values of pie", k', and djs’ by using algo-
rithm presented in Fig. 8.

3.3.3. Stopping criterion

Various stopping criteria have been developed in the literature. A popular stopping criteria and the temperature reaches a
set value (such as 0.01). Another criterion can be completing a predetermined number of iterations. In this paper, a combi-
nation of these two criteria is considered in which we stop at the earlier of the temperature reaching 0.01 or the completion
of 100 (350) iterations for small (large) size problems.

3.3.4. Commercial software

The optimization problem (SCD) is modeled with the AMPL mathematical programming language and solved with Gurobi
version 4.5.6. Each problem instance is solved on 4 cores (threads = 4) of a Dell Optiplex 980 with an Intel Core i7 860 Quad @
2.80 GHz, and 16 GB RAM. The operating system is Windows 7 Enterprise 64 bit. In our computational analysis, we terminate
Gurobi when the CPU time limit of 14,400 s is reached. Table 2 summarizes the results from the solution, and the discussion
is presented in Section 5.

4. Generation of test data

Let 0 indicate the state that a facility is producing no tainted materials; and 1 indicate the state that a facility is producing
some tainted materials. Let ®, € [0.50,0.95] be the probability of facility | being in state 0. Therefore, the assumption that all
facilities have an identical probability of working or failing is relaxed (Snyder and Daskin, 2005). If a facility is in state 1, the
proportion of tainted material is in the range of [0.10,0.30]. The proportion of tainted material that is detected after inspec-
tion is in the range of [0.01,0.09].

We define a scenario as an event where a subset of facilities L’ are in state 0, and facilities in the set L\ L’ are in state 1.
Given the number of facilities |L|, the total number of scenarios in which at least one facility is in state 1 is given by

Z,‘,ﬂl (l.”) = 2" _ 1. For our computations in this paper, we also include the scenario in which all facilities are in state 0,

then the total number of scenarios becomes 2. Hence, the probability of realizing a scenario s€S is defined as
Ps =L Ol Licp (1 — O1).

Finally, recall that we discussed the calculation of the expected available capacity of a facility on step 1 of the pseudo code
of SGH in Fig. 4. Since a facility can be either in state O with probability @, or state 1 with probability (1 — @;). We consider
1= O in our computations. We list other assumptions as follows:

o The ratio of total demand to total capacity is tight and it is 30% higher than the total demand before performing inspection
and discarding tainted items.

e The cost to discard is equal to 25% of the cost of shipping untainted materials.

e The cost of selecting a facility is correlated with the capacity such that the highest capacity has the highest selecting cost.

e The cost of inspection is correlated to the percentage improvement, which is the difference between g, and r, i.e., for
higher improvement the inspection cost is higher.

e Parameters in Table 1 are drawn from a discrete uniform distribution with the specified intervals:
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1. Calculate the expected available capacity of every facility.
2. Evaluate the total cost of selecting every facility individually. These costs are computed as
Il
Z(/?'/c +0o, + 7’&»)
S, +<————— for all facilities.
€]
3. Sort the facilities in increasing order of total costs (using an O(nlogn) sort such as HeapSort).
4. Leti=1.
5. If ZE(E[/]) >>"b, , open facilities 1 to [i] and go to 6, else i = i+1 and go to 5.
Jj=1 ceC
6. end
Fig. 4. Pseudocode of the Selective Greedy Heuristic (SGH).
1. Calculate the expected available capacity as presented in step 1 of SGH.
2. Sort the calculated values in step 1 in a decreasing order (using an O(nlogn) sort

such as HeapSort).
3. Leti=1.

4. If Z;E(’?[/]) > Z;bc , open facilities 1 to [i] and go to 6, else i = i+1 and go to 5.
j= ce

5. end

Fig. 5. Pseudocode of the Capacity-Based Greedy Heuristic (CBGH).

1. Calculate the maximum reduction in the fraction tainted materials as m, = ¢, —r, for

each facility.

2. Sort the calculated values in step 1 in a decreasing order (using an O(nlogn) sort
such as HeapSort).

3. Let s=1

4. Leti=1

5. If ;”[b,»]sx[,]’([j] >(1 —A)gb‘ , implement inspection in selected facilities [1] to [7]
by setting 7, = 1 V[j] X)) =1 and go to 6, else i = i+1 and go to 5.

If s <|S| ,lets=s+1and goto 3, else go to 7.
end

Fig. 6. Pseudocode of the Greedy Inspection Heuristic (GIH).

Table 1
Test data intervals.
Parameter Interval
b, [100, 300]
h [$1,000,000,$2,000,000]
n [$50,000,$100,000]
e [$500,$1000]
Oc [$10,000,$25,000]

5. Computational experiments

In this section, we perform computational experiments to assess the effectiveness of the algorithms and to gain insight
into the behavior of the supply chain when faced with the risk of delivering tainted materials. We also present some man-
agerial insights.
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for s=1to ‘S‘
1. Calculate the amount of saving ¢, for facility [/ in scenario s:

Il

(‘hx — 1 )Zolc
c=1

&, = —"C‘,Vl € L . Let the vector @, be the set of calculated savings where
n +(q1.\ — 71 )271(‘
c=1

@[ =]

K

)
2. Normalize vector ® : D = H? .

K

3. Leti=1
4. Generate r ~ Unif (0,1).If <@ and x =1, then z, =1.
5. Ifi= ‘L‘ then end, else i =i +1 and go to 4.

end for

Fig. 7. Pseudocode of the Random Greedy Inspection Heuristic (RGIH).

In Section 3.1, we presented three heuristics (BGH, SGH, and CBGH) to determine set of selected facilities, X, and also three
heuristics (FSIH, GIH, and RGIH) to determine the set of inspections to conduct, z. In total, we construct nine different heu-
ristic for determining x and z. Finally, we employ the greedy heuristic presented in Fig. 8 to solve SCD-Sub. All the algorithms
and SA were implemented and executed in MATLAB 7.9 and tested on a single core of a Dell OptiPlex 980 computer running
the Windows 7 Enterprise 64 bit operating system with an Intel(R) Core(TM) i7 CPU860@ 2.80 GHz, and 16 GB RAM.

We consider 12 sets of problems with 10 data instances in each. Hence, we solve in total 120 instances of varying sizes as
illustrated in Table 2. The second, third and the fourth columns represent the size of the problems under consideration. We
also report the average optimal value and average solution time of the SCD model for each set achieved by Gurobi. Finally,
the last column represents the total number of optimal solutions obtained from 10 data instances by Gurobi within the time
limit imposed.

As observed from Table 2, increasing the number of facilities implies an increase in the number of scenarios and the size
of the problem has a significant impact on the solution time. For instance, for the case of 10 consumers or 20 consumers and
10 facilities, Gurobi did not return any optimal solutions within the prescribed time limit of 14,400 s. In order to calculate the
relative optimality gap, we use the objective function value that is provided by Gurobi when the prescribed time limit is
reached. To assess each heuristic, we consider solution quality and solution (computational) time. For the solution quality,
we consider a quality criterion which is the gap between the result of heuristic/SA and the optimal/best solution obtained
from Gurobi. This gap is defined according to the following equation:

(SA(or Heuristics)Solution — Best Found(or Optimal Solution))
Best Found(or Optimal Solution) '

%gap =

Furthermore, given the randomness characteristic of GIH, RGIH, HC, VNS, and SA, the corresponding objective values and
solution times are the average across thirty independent replications. Table 6 reports the result for 2 facilities and 2, 5, 10,
and 20 consumers. Note that bold-faced values indicate achievement of the best solutions among constructive heuristics and
improvement heuristics/SA, respectively.

The results in Table 6 show that, regardless of the number of consumers, the heuristic algorithms always provide solu-
tions within 3% of the solution found by Gurobi. Heuristic algorithms are fast and their solution time generally does not vary
with the number of consumers. We see that SGH&FSIH and CBGH&FSIH algorithms provide better solution quality while HC
does not provide any improvement to the solution of the constructive heuristics. The VNS procedure provides better quality
solutions than the HC though this improvement comes with an increase in the solution time. Another observation from
Table 6 is that even though the solution time for SA algorithm is notably higher than the other algorithms, its performance
are not as good as VNS when we limit the problem instances to 2 facilities.

We now evaluate the effectiveness of our algorithms for five facilities. The results are presented in Table 7. The perfor-
mance of BGH&FSIH, BGH&GIH, and BGH&RGIH is not good. The reason is that in these three heuristics we use BGH to select
all the facilities while the total demand can be satisfied by selecting fewer facilities. SGH&FSIH, SGH&GIH, and SGH&RGIH
provide solutions on average within 8% of the best found solution with a remarkably fast solution time in comparison to
the optimal solution time. Both HC and VNS are capable of improving the solution quality even for a larger number of con-
sumers resulting in an average solution gap within 5% of the optimal solution. In particular, SA clearly provides the best over-
all solution cost for the range of problems tested and requires only a moderate amount of additional computational time
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Input: ¢ e C set of consumers, / € L set of facilities, s € S set of scenarios, f,, «,,n,, b, P,
A

Tc

4 Olc’ qls and r}s °

Output: x,,z,,p, ..k, .d,, and the total cost.

les > les

Stage One: Determine x by using BGH, SGH or CBGH.

Stage Two: Determine z, by using FSIH, GIH, or RGIH.

Stage Three: Solve SCD-Sub

Phase 1

1. VseS

2. Sort llc in increasing order. % < 0.8 < K

3. VYeeC

4. do until ¢, =0

5. [ =argmin{}, }VlieLceC

6. if g, >a_ then

7 Dis < 4., & <& —a., a <0
8. else if g, > 0then

9. Dis < 854, < a.—g;, 8 <0
10. end if

11. loop

12. end for

13. end for

Phase 2

14. VseS,Viel
15.  if z, =0 then

16. VeeC

17. d, <0

18. Koy <= Qi Dy
19. end for

20. else if z, =1then

21. VeeC

22 d/cs <~ (q[s - ’?s )p[cs
23, Kies <= Tis Pres
24. end for

25. end if

26. end for

27. end

Fig. 8. Pseudocode to Solve Problem SCD-Sub.

compared to other algorithms. SA achieves solutions which are on average within 3% of the best solutions found. For 5 facil-
ities and 10 consumers as shown in Table 2, we found 9 optimal solutions in 10 data instances. Therefore, in Table 7 we show
the gap between the optimal and non-optimal solutions (or best solutions found) separately.

In order to exercise the model more fully, we examine a set of problems with 10 facilities. In Table 2 we show that for sets
9 and 12 we were not able to find the optimal solution for any of the 10 instances in 14,400 s. In addition, in sets 3 and 5 only
50% and 10% of the data instances were solved to optimality, respectively. This indicates how increasing the number of
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1. foreach / € L do,
2. if x, =1then x, <~ Oelsex, < 1. Let y be the new set of selected facilities
3. Determine z, by using FSIH, GIH, or RGIH.
4. Solve Stage Three to determine SCD(y).
5. Compute saving as o, = SCD(x)—SCD(y)
6. If o, <0 thenx, <y, and goto 1. Else, / =/+1and go to 2.
7. end for
Fig. 9. Pseudocode of HC.
Consumer
1 2 3 4
facility
1 50 | 60+ | 85 85 —
2 21 45 29 29
3 81 | 36*— | 73 | 73
4 62 78 91 20
Fig. 10. Neighborhood strategy in VNS.
1. Set k<1
2. forall seS
3. while £ <K
Shaking
4. Set u<«p
5. Randomly select two values of / and ¢ to identify which flows will be changed. Call
them /,7,,¢,,c, .
Generate a random value 0< R < min( Pie> Pie,» Pre > Prc, )
7. Subtract R from Py, and p,. and add R to Py, and p, or vice versa (with

probability 1/ )

Improve or not:

7. Calculate the cost for u from equation (20)

8. If cost(u) <cost(p)then p<«uelse k < k+1
9. end while

10. end for

Fig. 11. VNS for improving the transportation cost.

facilities and correspondingly the number of scenarios has a significant impact on the solution time. We present the results
of algorithms for the tested problems in Table 8. Negative values in Table 8 indicate that the heuristics or SA achieved a bet-
ter solution than the best solution found by Gurobi. For 10 facilities and 10 or 20 consumers, SGH&FSIH, SGH&GIH, and
SGH&RGIH perform well based on the average solution gap. For the case of 10 facilities and two or five consumers
CBGH&FSIH, CBGH&GIH, and CBGH&RGIH achieved a better performance. However, the SA solutions outperform those found
by all the other algorithms, even though SA requires more computational time. Also, the minimum and maximum gap is



A. Madadi et al./ Transportation Research Part E 67 (2014) 105-123 117

1. Initialize the parameters of the annealing schedule (Initial temperature, final temperature and total
number of iterations)
2. Generate an initial solution by determining vector x°,z°, p k. ,d\. by the represented constructive or
improvement heuristics and define relevant total cost f(xo,zo, ook dy )
3. iter <—1; Temperature < Initial Temperature
4. while Temperature > Final Temperature or ifer < total number of iterations do
5. while done=false
6. aZeroElem <~ Number of zero elements in vector x" and z"”
7. aOneElem <— Number of one elements in vector x" and z™
8. aRand <— Generate a Random Number
1
9. if 0<aRand <Z
10. create a new solution using SA-swap method and return x* and z"
11. done <« true
1 1
12. else if 1 <aRand < 3 and aZeroElem>1
13. create a new solution using SA-add method and return x* and z"
14. done <« true
P 3
15. else if 5 <aRand < 2 and aOneElem > 1
16. create a new solution using SA-remove method and return x" and z""
17. done <« true
3
18. else if 2 < aRand <land aOneElem >2
19. create a new solution using SA-2swap method and return x" and z""
20. done <« true
21. end while
22. Obtain the values of p[“ .,k and d by using SCD-Sub.
23, i () £(x*) <0then £(x)= £(x* ), x' =x""
24. Update Temperature
25. end while

Fig. 12. Pseudo code of the SA algorithm.

usually somewhat better for the SA. Hence, for large size problems we recommend using the SA algorithm, although reason-
able results can still be achieved by some of the algorithms. For 10 facilities and five consumers, we found only 1 optimal
solution in 10 data instances. Hence, we separate the result for this data instance from the others and display the gap
between the optimal solution and the algorithms in the corresponding row of Table 8.

It is observable from the result that the number of facilities and consequently the number of scenarios has a significant
impact on the computational time in our model. However, the results indicate the effectiveness of the SA algorithm we pro-
posed, particularly for larger sized problems. For problems in practice (that can have even larger sizes), our SA heuristic
shows promising results.

5.1. Sensitivity analysis and insights

In this section, we analyze the SCD outcomes for various settings of some of the parameters in order to provide insights
that can assist decision-makers. We consider ten data instances for a supply chain network consisting of five facilities and
five consumers. Note that all 10 data instances are solved to optimality and the average optimal value is presented in Table 2.
We compare the results of our sensitivity analysis to the results obtained in our computational analysis, which we refer to as
the “base case.” We investigate the effect of each of the following:
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Table 2
Test problems’ sizes and the corresponding optimum solution values and times.

Set no. No. of consumers No. of facilities No. of scenarios Avg. optimal value/ Avg. optimum No. of optimal solutions
best values found time (s) in 10 instances
1 2 2 4 3,132,033 0.014 10
2 2 5 32 6,031,316 17.6 10
3 2 10 1024 12,190,855 11267.6 5
4 5 2 4 3,857,839 0.02 10
5 5 5 32 6,587,944 62.9 10
6 5 10 1024 12,632,921 13102.7 1
7 10 2 4 4,498,383 0.022 10
8 10 5 32 7,248,655 150.5 9
9 10 10 1024 13,207,650 b 0
10 20 2 4 5,526,660 0.03 10
11 20 5 32 8,503,834 325.7 10
12 20 10 1024 15,095,012 b 0

¢ Average of best objective values found.
b The CPU time exceeded the prescribed time limit of 14,400 s.

e Fixed cost of selecting a facility (f)).
o Fixed cost of implementing an inspection (n;).
e Cost of shipping tainted materials (oy).

5.1.1. Effect of varying fixed cost of selecting a facility (f;)

In this section, we numerically examine the impact of the fixed cost on the optimal decisions. We first assume that our
facilities are small-size facilities where the fixed cost of selecting a facility is drawn from a discrete uniform distribution
between $300,000 and $500,000. We also consider larger size facilities where the fixed cost of selecting a facility is drawn

Table 3
Impacts of the fixed cost on optimal solution.
1 € [300k, 500k] fie [1M, 2M] fie[2M, 3M]
Avg. expected total cost 2,538,062 6,587,944 10,514,286
Avg. fixed cost 1,642,266 5,210,752 8,994,122
Avg. expected untainted delivered cost 587,447 592,174 597,569
Avg. expected tainted penalty cost 232,563(—70%) 755,792 907,643(20%)
Avg. expected inspection cost 68,523(162%) 26,185 13,203(-50%)
Avg. expected discard cost 7262(138%) 3041 1748(—42%)
Avg. no. of selected facilities 41 34 3.5
Table 4
Impacts of the inspection cost on optimal solution.
n; € [25Kk, 50K] n; € [50k, 100K] n; € [75k, 150k]
Avg. expected total cost 6,569,842 6,587,944 6,620,171
Avg. fixed cost 5,210,752 5,210,752 5,210,752
Avg. expected untainted delivered cost 592,205 592,174 592,152
Avg. expected tainted penalty cost 751,566(—0.6%) 755,792 775,485(3%)
Avg. expected inspection cost 12,265(—52%) 26,185 38,865(48%)
Avg. expected discard cost 3054(0.4%) 3041 2942(—4%)
Avg. no. of selected facilities 34 34 34
Table 5
Impacts of the cost shipping tainted materials on optimal solution.
oy € [5k, 10Kk] oy € [10k, 25k] oy € [15k, 30k]
Avg. expected total cost 6,000,543 6,587,944 6,605,522
Avg. fixed cost 5,068,814 5,210,752 5,373,692
Avg. expected untainted delivered cost 582,557 592,174 485,849
Avg. expected tainted penalty cost 340,375(—55%) 755,792 698,080(—8%)
Avg. expected inspection cost 7971(-70%) 26,185 43,276(65%)
Avg. expected discard cost 826(—72%) 3041 4625(52%)
Avg. no. of selected facilities 33 34 3.7
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Table 6
Comparison of algorithms results for 2 facilities.

Constructive heuristics Improve heuristic
and metaheuristic

BGH&FSIH BGH&GIH BGH&RGIH SGH&FSIH SGH&GIH SGH&RGIH CBGH&FSIH CBGH&GIH CBGH&RGIH HC VNS SA

2 Consumers

Min gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 000 0.00
Avg. gap (%) 0.40 047 0.22 0.21 0.64 036 036 0.56 025 021 006 025
Max gap (%) 0.89 0.77 1.59 0.76 2.49 0.76 0.56 1.59 0.59 056 009 0.89
Avg. time (s) 0.002 0.002 0.002 0.002 0002  0.002 0.002 0.002 0.002 0.008 0.021 0.047

5 Consumers

Min gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Avg. gap (%) 134 159 1.86 0.97 136 133 0.84 1.08 123 084 025 055
Max gap (%) 3.75 3.62 3.83 3.83 3.83 3.83 147 2.53 233 147 137 147
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.006 0.044 0.047

10 Consumers

Min gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Avg. gap (%) 0.96 2.12 0.68 0.48 2.19 1.08 0.48 0.81 1.08 048 0.05 0.50
Max gap (%) 4.77 7.02 1.84 1.84 7.02 4.55 1.84 2.16 2.84 1.84 040 184
Avg. time (s) 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.006 0.03 0.14

20 Consumers

Min gap (%) 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Avg. gap (%) 1.58 1.58 231 1.58 1.58 1.97 1.58 1.90 1.90 158 129 158
Max gap (%) 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 537 449 537
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.023 0.117

Bold-faced values indicate achievement of the best solutions found.

from a discrete uniform distribution between $2,000,000 and $3,000,000. We keep all other parameters constant. The results
are presented in Table 3.

From Table 3 we observe a considerable reduction in both the average expected penalty cost of shipping tainted materials
and the average expected cost of discarding tainted materials. This reduction is a consequence of an increase in the average
number of selected facilities as well as the implementation of more inspections at these facilities. The reduction in the aver-
age number of selected facilities causes the decrease of the available capacity. Hence, the inspection at the facilities is refused
and the tainted materials are not discarded in order to provide enough capacity to be able to satisfy the total demand of con-
sumers. Furthermore, higher fixed costs of selecting a facility results in a reduction in implementation of inspection at the
facilities, and subsequently, increased quantities of tainted materials reaching consumers. On the other hand, reducing the
fixed cost of selecting a facility or adding more small size facilities results in selecting more facilities and providing extra
capacity which leads to implementation of more inspection at facilities and discarding more tainted materials.

5.1.2. Effect of varying fixed cost of implementing an inspection (n;)

In this section, we examine the impact of inspection cost on the optimal decision by considering two ranges for our sen-
sitivity analysis. In the first range, we will have a 50% reduction in the cost of inspection (i.e., inspection cost drawn from
U[$25,000,$50,000]), and in the second range, we consider a 50% increase in the cost of inspection (i.e., inspection cost drawn
from U[$75,000,$150,000]). The results are presented in Table 4.

From Table 4, we note that while the inspection cost decreases, the average discard cost increases and the average
expected penalty cost of shipping tainted materials decreases. We also observe higher average expected cost of discarding
tainted materials, which indicates the reduction in the cost of implementing inspection and results in more inspections being
performed, as would be expected. We observe that the average fixed cost, the average expected penalty cost of shipping
tainted materials, and the average number of selected facilities are all insensitive to the change.

The results in Table 4 also show a reduction of inspection implementation when the inspection cost increases, while the
average number of selected facilities and the average fixed cost remain unchanged. However, the average discard cost
decreases and the average expected penalty cost of shipping tainted materials increases. The obtained result indicates that
managers and decision-makers should maintain inspection cost at the lowest possible value.

5.1.3. Effect of varying cost of shipping tainted materials (o)

This section presents relative differences in the optimal cost expectations and the average number of selected facilities
with respect to changes in the penalty cost of shipping tainted materials. We consider two ranges for our analysis. In the
first range, the cost of shipping tainted materials is drawn from a discrete uniform distribution between $5000 and
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Table 7
Comparison of algorithms results for 5 facilities.
Constructive heuristics Improve heuristic and metaheuristic
BGH&FSIH BGH&GIH BGH&RGIH  SGH&FSIH SGH&GIH SGH&RGIH  CBGH&FSIH CBGH&GIH CBGH&RGIH HC VNS SA

2 Consumers
Min gap® (%) 7.09 7.09 7.09 0.52 1.34 1.34 0.29 0.29 0.30 0.29 0.26 0.14
Avg. gap® (%) 16.05 15.68 15.74 3.83 3.99 3.98 2.37 2.61 249 2.16 1.92 0.89
Max gap® (%) 30.08 30.08 28.65 12.36 12.37 12.32 7.46 7.53 7.70 6.40 2.02 1.08
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.066 0.146
5 Consumers
Min gap® (%) 13.10 14.38 13.74 1.00 0.98 1.45 1.44 238 1.47 0.58 0.00 0.04
Avg. gap® (%) 18.37 18.35 18.30 4.13 4.20 4.11 4.52 4.48 4.38 1.99 1.23 1.18
Max gap® (%) 25.37 25.33 25.64 7.78 7.60 7.54 11.14 11.11 11.27 3.50 2.83 2.66
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.009 0.173 0.208
10 Consumers
Min gap® (%) 8.37 9.70 9.09 1.50 1.28 3.24 3.59 3.69 3.48 1.44 0.98 0.43
Avg. gap® (%) 14.24 14.51 14.90 4.02 4.41 4.72 7.81 7.72 7.37 271 2.21 149
Max gap® (%) 19.20 18.13 19.08 6.08 6.09 6.60 12.09 11.44 10.25 3.59 3.58 2.21
Avg. gap w/non-opt sol. ” (%) 9.63 9.70 9.83 2.17 3.74 3..86 8.31 8.70 8.15 1.03 0.03 —-0.11
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.014 0318 0.709
20 Consumers
Min gap® (%) 2.01 2.01 3.30 3.12 3.11 4.02 6.86 6.87 6.94 1.97 1.89 1.75
Avg. gap® (%) 9.70 9.70 10.91 6.04 6.02 7.94 12.75 12.83 13.78 4.65 3.53 317
Max gap® (%) 15.06 15.06 18.32 12.69 13.32 13.91 15.77 15.77 17.68 9.41 5.67 5.37
Avg. time (s) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.029 0.635 1.049

€21-501 ($10Z) 29 4 1Dd Yo.Dasay uoupliodsun.i] /I 32 IPDPOA Y

Bold-faced values indicate achievement of the best solutions found.

Italicized indicate a better solution than the best solution found by Gurobi within the time limit.
2 Values indicate the average gap with optimal solutions found.
b Values indicate the average gap with the best solution found.



Table 8
Comparison of algorithms results for 10 facilities.

Constructive heuristics Improve heuristic and metaheuristic

BGH&FSIH BGH&GIH BGH&RGIH SGH&FSIH SGH&GIH SGH&RGIH CBGH&FSIH CBGH&GIH CBGH&RGIH HC VNS SA
2 Consumers
Min gap® (%) 20.01 21.25 20.52 4.24 417 2.52 0.46 0.46 0.43 0.13 0.09 0.09
Avg. gap® (%) 24.10 24.02 22.75 7.04 6.86 6.57 3.93 3.89 3.56 1.14 0.54 0.12
Max gap® (%) 29.06 28.11 28.00 10.63 8.72 8.78 9.65 9.98 9.29 2.33 1.24 0.35
Avg. gap w/non-opt sol. ” (%) 21.17 21.26 21.20 6.72 6.69 6.44 3.21 3.45 3.14 1.09 0.47 -0.02
Avg. time (s) 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.218 3.838 4.075
5 Consumers
Avg. gap® (%) 20.25 21.42 22.63 8.41 7.14 5.94 0.89 0.89 0.90 0.89 0.87 0.85
Min gap w/non-opt. sol. 1037 10.31 0.70 4.92 4.32 3.72 0.89 0.89 0.90 0.87 -0.31 -0.36
Avg. gap w/non-opt. sol. ” (%) 15.63 15.69 16.96 5.18 5.67 5.62 4.63 4.62 4.60 1.93 0.40 0.38
Max gap w/non-opt. sol. 25.23 24.98 24.70 15.40 9.52 8.89 8.67 8.83 9.78 4,22 1.40 1.73
Avg. time (s) 0.007 0.007 0.007 0.007 0.008 0.008 0.007 0.007 0.008 0.196 9.068 16.907
10 Consumers
Min gap w/non-opt. sol. ° (%) 11.14 11.08 11.30 -3.89 -3.64 -2.58 -4.34 -4.43 -4.29 -4.49 -6.28 -6.52
Avg. gap w/non-opt. sol. (%) 18.25 18.36 17.75 3.38 3.38 4.05 5.20 5.21 5.59 0.95 -0.37 -0.88
Max gap w/non-opt. sol. ° (%) 25.68 25.58 23.73 8.54 9.54 10.95 14.42 12.95 12.98 5.87 4.02 1.73
Avg. time (s) 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.825 15.839 19.971
20 Consumers
Min gap w/non-opt. sol. ° (%) -0.89 -0.83 -0.15 —12.02 —11.99 —10.70 -7.63 -7.59 -5.52 —13.33 —13.33 —14.28
Avg. gap w/non-opt. sol. ® (%) 11.26 11.30 11.77 -1.85 —1.74 0.58 4.59 4.62 5.37 -2.34 -2.76 -3.77
Max gap w/non-opt. sol. ” (%) 17.78 17.80 18.06 2.70 2.70 5.45 17.03 17.05 17.03 242 2.37 0.59
Avg. time (s) 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 2.266 35.945 44.989

€21-501 ($102) 29 4 1Dd Yo.Dasay U0lDILOASUDLL /I 32 IPDPDIA 'Y

Bold-faced values indicate achievement of best solutions found.

Italicized indicate a better solution than the best solution found by Gurobi within the time limit.
2 Values indicate the average gap with optimal solutions found.
b Values indicate the average gap with the best solution found.
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$10,000. For the second range, the cost of shipping tainted materials is drawn from a discrete uniform distribution between
$15,000 and $30,000. The results are presented in Table 5.

For o, € U[5000,10,000], we observe that the average number of selected facilities is insensitive to the change. We also
notice a remarkable reduction in the inspection cost and the average expected discard cost. This reduction implies the imple-
mentation of fewer inspections at the facilities. These observations indicate that the use of a low penalty cost for shipping
tainted materials results in decisions that do not encourage the detection of tainted materials or the selection of enough
facilities to protect against shipping tainted materials. For o, € U[15,000,30,000], we observe a noticeable increase in the
number of selected facilities. We also notice an increase in the inspection cost and the average expected discard cost.

The results imply that lower penalty costs for shipping tainted materials will lead to fewer facilities being selected and
also fewer inspections conducted at facilities. If the decision maker wants to protect against the delivery of tainted materials,
then either the penalty cost must be increased or the maximum allowable amount of tainted product delivery must be
reduced when designing a supply chain network model.

Another parameter that is fixed (as an assumption) is that inspection yields are known a priori. This is another area in
which the decision maker can carry out sensitivity analyses (based on inspection yield values that they feel are appropriate)
in order to gain the insight into which facilities to open or close.

6. Conclusions and future research

This research addresses a supply chain network design to hedge against the risk of supply disruptions and sending tainted
materials to consumers. The aim of the model consists of the facility selection, actual capacity allocation among the consum-
ers, and determination of an inspection policy with the objective of minimizing the total cost. The impact of supply/capacity
uncertainty is explicitly modeled in all our models in order to design a reliable supply chain network.

Experience from solving the problem using commercial software indicated that the number of facilities, and consequently
the number of scenarios, has a significant impact on the computational time. As a result, we developed several heuristic
methods and a metaheuristic approach to effectively solve the presented model. Based on our results, the SA approach is
not efficient in terms of solution quality and solution time for the small sized problems or small number of scenarios. How-
ever, some of the heuristics, in particular SGH&FSIH, SGH&GIH, SGH&RGIH and CBGH&FSIH, achieved good solution qualities
in a more reasonable time when compared to the optimal or best found solution. HC and VNS were able to improve the solu-
tions obtained from constructive heuristics. Therefore, constructive and improvement heuristics are preferable on small
sized problems. However, for practical sized problems, i.e. ten facilities and more, SA outperforms constructive and improve-
ment heuristics, even though it requires higher computational time.

Our sensitivity analysis revealed some managerial insights. Our analysis showed that the fixed cost of selecting a facility
or adding smaller-sized facilities results in the implementation of more inspections at facilities and discarding more tainted
products. Furthermore, maintaining inspection costs at the lowest possible value leads to shipping less tainted products.
Finally, our analysis indicated that considering high penalty costs of shipping tainted products when designing a supply
chain network model results in discarding more tainted products and consequently shipping less tainted products.

The contributions of the paper to the literature are threefold. First, we develop and present a mathematical model in order
to design a supply chain infrastructure that is resilient to supply quality disruption and shipping tainted materials to con-
sumers. Second, we introduce a producer-implemented inspection policy in order to reduce the volume of tainted materials.
The costs related to inspection and disposal of discovered tainted materials are also incurred in the mathematical model.
Finally, we develop several heuristics and metaheuristics to obtain acceptable solutions to the models in a reasonable time.

There are several interesting future research directions. We assumed a deterministic demand in our model whereas in
real world this may not be a valid assumption. Moreover, we assumed an inspection and discard policy but in some indus-
tries like automotive and electronics industry this can be considered as inspection and fixed policy where items defected
after detecting can be repaired. As another future extension, we can consider other solution methodologies, such as Bender’s
Decomposition, or Lagrangian relaxation, to solve larger-sized problems. Other metaheuristic techniques such as Genetic
Algorithm or Tabu Search can be developed to compare their effectiveness with SA algorithm.
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Appendix A

This appendix contains all the detailed tables of sensitivity analysis (see Figs. 4-12 and Table 2-8).
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