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Abstract 

In a Build-to-Order environment, a configurator relays the taxonomy of customization choices to the customer, then translates these choices into 
a bill of materials. Configuration Management (aka Variety Management) of the system entails validating proposed changes to the policies that 
govern both configurator processes. We present a satisfiability approach to the problem, in which a suite of conflict classes are developed, 
representing potential configurator failure modes. Satisfiability logic routines test the potential presence of each conflict class if the proposed 
change is adopted, using an integrated constraint set including both part allocation and customization object relationships. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS). 

 Keywords: Configuration Management, Variety Management; Satisfiability 

1. Introduction 

Over the last few decades, global markets for manufactured 
goods have increasingly offered customizable products flexible 
to customer preferences. To remain relevant in this shifting 
economy, manufacturers have focused on mass customization 
practices that support the increase in product variety while 
retaining high production volumes [1][2]. 

Configuration management is the process of constructing 
and managing a domain of product variety space that meets 
customer needs. There are several component activities under 
this umbrella, including assessing customer preferences and 
product variant capabilities, and identifying specific product 
configurations that meet demand [3]. These problems are 
particularly difficult when the degree of customization choices 
is high, as each configuration management problem grows 
exponentially in response to each additional customization 
choice. Product families are a common method for managing 
this complexity, in which the domain of product variety space 
is divided into an array of independent base product platforms, 
each of which can be modified by the addition, subtraction, or 
substitution of modular options [4]. Even with a product family 

approach, however, maintaining product variety information 
remains a challenge for highly customizable products [5]. 

Build-to-Order production allows customers to configure 
their purchase personally, choosing from the domain of 
offerings made by the manufacturer. If product variety is small, 
with relatively few configuration alternatives, then the 
customer may be presented with a catalog enumerating each 
fully-configured offering. If product variety is high, however, 
an enumeration approach is not possible. The German 
automotive industry presents a compelling example, where 

Fig. 1. Model of configuration variants in the automotive industry [7] 
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vehicle configuration is a composite of many smaller 
subsystem configuration problems, such as color of paint, 
engine size, trim and badge options, etc. Taken as a whole, up 
to  unique offerings may exist for some vehicles [6]. Fig. 
1 shows an example of configuration complexity in the 
automotive industry. This diagram depicts the vehicle 
configuration problem hierarchically according to the product 
family approach, with platform at the topmost level and more 
detailed configuration features below. 

A configurator is a software alternative to catalogs that 
divides the product configuration process into stages. In the 
first stage the customer selects the platform, or base product. In 
successive stages the customer is queried over a set of options 
corresponding to one particular subsystem of the product. For 
example, a vehicle configurator may first query for the model 
(tagged name), then later query for engine and drivetrain 
options, interior cabin options, etc. Once the customer 
completes and submits an order, the configurator constructs a 
bill of materials (BOM) by translating configuration choices 
into a set of corresponding parts. 

The manufacturer requires control over the choices rendered 
by the configurator at each stage, to ensure that final configured 
product conforms to technological or marketing specifications. 
To this end, a rule-based reasoning technique guides the 
configuration process. Rule-based reasoning encodes a set of 
production rules, or constraint relationship between options, 
usually expressed as conditions and consequences relating 
options (if “A” then “B”). The configurator consults these 
production rules between each stage, checks whether previous 
customer choices meet the conditions of each rule, then 
constructs the next configuration stage to only include those 
choices that satisfy all rules. Another set of rules manages the 
mapping of the configured product to part allocation. Examples 
of rule-based configurators are given in [8][9][10].  

Technology and market conditions change through time, 
inducing changes in product offerings, parts usage, or both. In 
operational terms, this entails making changes to the rule sets 
that control the configurator customer interface, and the part 
allocation processes that creates the BOM. The configuration 
management task is to validate a candidate set of rule 
alterations, to ensure that the alterations map correctly to the 
intended change and don’t create unintended side effects, e.g. 
an incorrect BOM for some product configuration. 

The purpose of this paper is to develop support methods for 
this validation process, based on needs identified in previously 
published research. Section 2 summarizes the particular 
motivating scenario. Section 3 provides the background for the 
resulting validation process, which is described in Section 4, 
with examples. Section 5 concludes the paper.  

2. Motivation

A wide variety of configuration management techniques 
have been developed to assist in the implementation. Phelan 
et al [11] describe several methods as well as potential 
challenges, which directly motivates the solution proposed 
here. The remainder of this section summarizes the findings 
of Phelan et al [11] for the convenience of the reader. 

The foundation for the manufacturer’s configuration 
management system is a rule database that contains the rules 

governing the possible options and packages for a specific 
vehicle, resulting in a rule-based configuration management 
system. Production rules can be described as a set of 
conditions and consequences (if “A” then “B”). Therefore, 
the condition relates to an existing component or state of the 
product which, if met, results in an execution of the 
consequence action. An example of this would be as follows: 
“If Part A is found in the configuration, then Part B cannot 
be used in this configuration”. The scope of the rule database 
(over one thousand rules per vehicle) makes it difficult to 
ensure the accuracy of all of the rules and to ensure that the 
rule database covers the complete set of feasible 
configurations for each vehicle. Additionally, maintaining 
the rule database, with either updates or changes, is equally 
challenging due to the amount of possible change 
propagation and ensuring that all necessary changes have 
been made. 

The rule database is used for at least three separate 
functions in the company. First, it is used for the ordering of 
vehicles which are all specified external from the 
manufacturing site, either by a customer or a dealership. 
Each vehicle built results from a selection of the possible 
components or options that are available or feasible based on 
location and other specified options. The tool used for 
specifying the vehicles relies on the above rule database. 
Second, the rules are used for part-ordering. Once a vehicle 
has been ordered, a parts management system uses the 
specified options to identify the parts that are required (and 
therefore ordered from suppliers) for the vehicle. Third, the 
line balancing utilizes the rules to accurately predict the time 
utilized for each worker and station. Tasks that cannot occur 
on the same vehicle do not contribute to the takt time and are 
detected by “violations” of the rules in the database; the 
larger of these task times should be used as the time for the 
set of those tasks. As all of the systems rely on the rule 
database, it is imperative that all of the rules are accurate and 
complete.  

The rule database is updated throughout time based on 
marketing or engineering changes. Phelan et al report that 
much of the verification process for rule change is based on 
individual employee experience. For example, one employee 
reported that his experience with different vehicle systems has 
taught him to examine some areas more than others. Such 
reports were typical in the case study. However, this type of 
human verification is not feasible due to the scope of the rule 
set. There are approximately 1,500 parts per vehicle, with 
nearly 10 variants per component. Additionally, there are a 
half dozen models with dozens of variants and scores of 
options in configuring these components. Ultimately, there 
are nearly 700 million possible configurations that must be 
checked for feasibility periodically. 

Over the course of the case study, the researchers 
identified numerous opportunities for improvement, which 
highlights the need for the work reported here. These are 
classified as follows, a few with an example of a motivating 
scenario. 

“Rule conflict.” Is there a subset of two or more rules 
such that no possible configuration may satisfy them? 
“Object activation.” Can all options/parts/etc. that are 
declared as being available for selection actually be 
selected?  
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“Part family allocation.” For a given family of alternative 
parts (e.g. all windshields), will one (and only one) of the 
parts be allocated for every configuration? A vehicle was 
being assembled for which there was no windshield. The 
selected options result in a configuration that is not 
feasible but this was not noted until the vehicle was in 
production. The correct allocation of part types should 
always result from each feasible vehicle configuration.  
“Part family matching.” Consider a suite of several part 
families, some of which are intended to match to others 
for geometry or color reasons. Are the rules correctly 
implemented, or is there a configuration that mismatches 
parts? An exhaust system used with the diesel versions of 
a particular model was determined (in assembly) to be 
incompatible with a sports package due to a geometric 
constraint with the included fog lights. A rule was created 
to forbid the sports package and the specific exhaust 
system on the same vehicle, preventing such errors in the 
future. Months later, it was decided that the fog lights 
should be unbundled from the sports package. 
Unfortunately, the same production error resulted 
(exhaust system and fog light physical conflict) because 
the rule was not carried over from the sports package to 
the fog lights. 
“Antecedent satisfiability.” Are there any rules for which 
the antecedent (IF- part) of the rule cannot be satisfied? 
If so, then the effects of the rule are inconsequential, as 
the rule is never active. This is a desirable test for rule 
database pruning. 
“Implicit relationships.” Are there any binary 
inclusion/exclusion object relationships that are 
implicitly enforced, through the collected effects of 
explicit constraints? This was observed when a new rule 
was created (and approved) which artificially limited the 
possible windshield options for a given model. The added 
rule disallowed the selection of the option for an anti-
glare strip on the windshield for certain models. 
However, due to limitations with the parts, this meant 
that the only allowable configuration for customers 
desiring the anti-glare strip would also be required to 
purchase the heads-up display option. There is no reason 
for the two options to require the presence of the other 
option but the two options were implicitly linked. 

3. Rule structure and object ontology  

Several different types of logical objects play a role in the 
configurator processes. Although all objects are Boolean in 
nature, being either present (true) or absent (false) on any final 
product, there exist varying ontological relationships both 
within and between object types. Quickly summarized, the five 
object types are: 

Options, conceptual optional modular features. 
Classes, sets of mutually exclusive option alternatives 
related to a single product feature. 
Packages, aggregated sets of options. 
Parts, the physical components assembled into the final 
product. 
Part families, sets of alternative parts for a single purpose, 
only one of which may be used per product. 

Options and parts are atomic objects. Parts are physical 
entities as well as configuration objects, as part variables 
correspond one-to-one with inventory items that may be 
installed on the product. Options are conceptual representations 
of elemental configurable features, e.g. roof racks on a vehicle. 
The customer may either select an option or not, to express their 
preference for each feature. The other three object types, other 
than options and parts, are composite objects built from 
multiple option or part objects. 

Package objects are marketing-derived batches of options. 
Packages are designed to allow a customer to quickly select a 
large array of synergistic options simultaneously, rather than 
individually choosing each individual option. For example, the 
advanced electronics package on a vehicle might specify 
selecting the heads-up display, backseat television screens, and 
one of two top end stereo options (but not any lower-tier 
stereos). Each of these options could be selected individually 
by the customer, if the package is not selected. The configurator 
presents packages to the customer at the start of each subsystem 
configuration stage, to permit quick selection of options for that 
subsystem. 

Classes are used for product features that might intuitively 
be thought of as a single variable with multiple possible values. 
Rather than encoding such cases with a single multi-valued 
option variable, instead each value is modeled as a separate 
Boolean option object, and a class object is introduced that 
contains all the member options. For example, the “color” class 
may contain member red, yellow, and black Boolean option 
variables. The ontology of a class object requires that all 
members are mutually exclusive, allowing no more than one 
member to be present on any configured product. Class objects 
are also Boolean variables, and are true if some member option 
is true, and false if all member options are false. Classes are not 
exposed to the customer in the configurator, as they are 
intended to help maintain the integrity of production rules.  

Part families are collections of alternative, mutually 
exclusive parts. Depending on the configuration selected, one 
of an array of modular parts is installed to perform a given 
function. Part families are similar to classes, except that part 
family members are always parts and classes include only 
options.  

There are two types of production rules, corresponding to 
the two sequential configurator processes. The first set of rules 
governs interactions between options, classes, and packages, 
and is consulted by the configurator during the configuration 
process. These rules constrain the customer from configuring a 
product which is disallowed, by specifying the domain of the 
total configuration space that is permissible. The second set of 
rules governs the translation of a configured product into a 
BOM, by mapping each part to a set of conditions that call for 
the part. The conditions for each part are functions of the 
options and packages selected by the customer during the 
configuration process. 

3.1. Background for Boolean satisfiability implementation  

This section is included for completeness for the reader.  
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3.1.1. Rendering production rules as Boolean expressions  
All object ontologies and production rules are reduced to 

first-order Boolean logic, a mathematical model and formal 
grammar used for reasoning about the truth of logical 
expressions. Boolean expressions are constructed as a series of 
operators and literals, assembled according to a formal 
grammar. Literals are Boolean objects, which are either true or 
false, and include all configuration objects discussed in section 
3. Operators are the logical functions OR, AND, and NOT, 
used to conjoin literals into expressions. All configuration 
constraints encoded in the configurator customer interface and 
BOM translation subsystems are encoded as first-order 
Boolean expressions, and each expression must be satisfied by 
any valid configuration. Table 1 lists the components used to 
render production rules as Boolean expressions. 

Table 1. Grammar of Boolean expressions 

Expression component Syntax Example 

AND & (A & B) means “both A and B” 

OR / (A / B) means “A or B” 

NOT  or - (-A) means “not A” 

IMPLICATION  (A  B) means “if A, then B” 

BICONDITIONAL  (A  B) means “A if and only 
if B” 

Literal <name> A is itself 

Production rules that are written in if-then form require no 
manipulation, as the format is 
already a Boolean expression. To this set of rules are appended 
additional Boolean expressions to reflect the relationships 
implied by class, part family, and package ontologies. 

Each class object requires exactly one of its member options 
to be true. For each class, a Boolean expression is generated to 
represent membership, e.g. . Next, a 
set of Boolean expressions is generated to enforce exclusion 
constraints between members, taking the form 

 . Each part family generates exclusion and 
membership expressions in the same way. 

Packages are defined by expressions of the form 
P7S2A  (!S255A) & (!S4CKA / S4ADA / S4B8A) . The 
antecedent of this implication is the package object, and the 
consequence is the set of options that defines the package. Note 
that the example consequence is clustered as a set of 
parenthetical clauses, each beginning with a “!” mark. Each of 
these clauses corresponds to a set of mutually exclusive 
options. After selecting a package, the configurator will prompt 
the customer to pick one option from each parenthetical clause. 
Each exclusive clause must be transformed to first-order 
Boolean logic. Consider the example clause !A / . After 
transformation, the expression becomes 

.  

3.1.2. Boolean Satisfiability 
If all literals are assigned a truth value, then a Boolean 

expression containing them may be resolved to either true or 
false. If, on the other hand, some or all of the literals are 
unassigned, then the truth of the expression may be unresolved. 
Validating the set of production rules requires checking that all 
user-selectable configurations result in correctly specified, 

buildable products. When working with Boolean expressions 
that contain unspecified literals, a pertinent question may be “Is 
there any set of true/false values for literals that results in the 
expression resolving to true?” This question is known as the 
Boolean satisfiability problem (SAT).  

A series of breakthroughs in the early 2000s spurred the 
development and proliferation of SAT solvers [12][13][14]. 
Industrial application of these tools to verification problems in 
railroad, avionics, and automotive sectors followed shortly 
thereafter [15][16]. These solvers take as input a set of Boolean 
expressions, and search for some combination of literal values 
that will “satisfy,” i.e. result in all expressions evaluating true. 
If the solver finds that no possible combination of literal values 
can satisfy all expressions, then the solver returns 
UNSATISFIABLE. Otherwise, the solver returns 
SATISFIABLE along with the values found for each literal.  

SAT solvers generally require inputs in the DIMACS 
conjunctive normal form (CNF) format. Each Boolean 
expressions of the form discussed in section 3.1 may be 
programmatically held in a binary parse tree data structure, 
populated by a recursive descent parse of rule strings. Nodes in 
a tree represent operators, with children nodes representing 
operands. Each binary tree is transformed to CNF by following 
these steps: 

Transform “!” Exclusive-OR subtrees  
Reduce binconditionals to two conditionals 
Reduce conditionals to AND, OR, NOT 
Propagate NOT downward towards leaves 
Distribute AND over OR 
SAT problems do not strictly require that all literals be 

unspecified at the start. A partially specified SAT problem is 
accomplished by appending an additional expression for each 
literal that has an initial value. For example, appending the 
expression “-A” will force solutions where A=false. 

The general strategy of the validation methods below is to 
construct a SAT problem instance (or suite of parallel SAT 
instances) that is (are) equivalent to a conflict. The SAT 
problem is then evaluated via the SAT solver. If the solver finds 
a solution, then this means that there exists a set of literal 
true/false values with which the conflict emerges. 

4. Conflict Classes 

The bulk of the contribution of this paper is presented in this 
section, in which the rule database is subjected to various tests 
based on which type of potential conflict is being considered. 
The following subsections describe independent experimental 
tests to check for potential conflicts arising after a change to 
production rules. The general methodology for each conflict 
detection method is to begin with all existing constraint 
information, aggregated across all production rules and object 
ontologies, as discussed in section 3. This union of production 
rules is referred to as the BASESAT herein. Each conflict 
detection method appends some test expression(s) to the 
BASESAT for the particular conflict detection class, then 
solves the SAT instance with a SAT solver. If a suite of tests is 
performed serially then all test expressions are removed 
between tests, resetting the BASESAT to its original state.  



208   Bryan Pearce et al.  /  Procedia CIRP   44  ( 2016 )  204 – 209 

In each conflict class subsection below are details for 
constructing test expressions and logic for interpretation of 
SAT solver results, as well as example applications of each 
conflict class.  

4.1.1.  Rule conflict 
A rule conflict test checks whether the change has created a 

conflict that prevents all rules from being satisfied 
simultaneously. The method to perform this test is to append 
the proposed change onto the BASESAT, and then apply the 
SAT solver. If the solver returns UNSATISFIABLE, then the 
change has created a conflict. If, on the other hand, the solver 
returns SATISFIABLE, this is not sufficient evidence to 
conclude that there are no problems with the change. There 
might still be issues that could be detected by performing some 
of the other conflict detection tests. For example, consider the 
existing rule on the first row of Table 2, and suppose the change 
is to induce the ruleTable 2 shown on row 2. 

Table 2. Rule conflict example 

Rule Constraint 

Current L807A & S609A  S6AEA 

Proposed L807A & S609A  -S6AEA 

 
Although this pair of rules is clearly nonsense, the solver 

will return SATISFIABLE if this experiment is performed. If 
either rule is “active,” i.e. its antecedent is true, then the other 
rule will be violated. However, the apparent conflict can be 
avoided by the satisfiability routine, and a satisfying 
configuration found, if both rules are inactive. In this case, 
setting either option L807A or S609A to false will deactivate 
both rules. Adding this new rule would effectively forbid any 
valid configuration from having both L807A and S609A. See 
section 4.1.3 for testing conflicts of this type. 

4.1.2.  Object activation  
Object activation tests iteratively check each individual 

object, to determine whether there exists a configuration for 
which the object is active. An object is disabled if no possible 
configuration activates the object. Disabled objects are 
evidence of errors arising from the changes. The types of 
objects considered may be divided into two categories, literals 
and constraints. The following subsections discuss these. 

4.1.2.1. Literal activation 
Literals include parts, options, packages, and class objects. 

Each literal is checked individually, to determine whether the 
literal is active on some configuration. A single test expression 
is appended to the BASESAT during each iteration, forcing the 
literal to be active, e.g. . If the SAT solver 
returns SATISFIABLE then the literal may be active. Else, if 
UNSATISFIABLE is returned, then the literal is not permitted 
on any configuration. Disabled literals are evidence of errors in 
the implemented changes. 

4.1.3. Antecedent Satisfiability 
The antecedent is the “IF” portion of a rule. Testing 

antecedent satisfiability verifies that a rule can be activated. 

The scenario presented in section 4.1.1 showed a latent 
conflict, causing rule deactivation. In cases such as this, 
activating the rule results in no satisfying configurations. This 
test iteratively tests each rule, by appending a forcing 
expression for the rule to the BASESAT. For example, Table 3 
shows an existing rule, and a corresponding test rule forcing it 
to be active. If the solver returns SATISFIABLE for this test, 
then the rule can be activated. Else, the proposed change has 
forced the rule to be inert, and is evidence of a potential error. 

Table 3. Antecedent satisfiability test expression 

Rule Constraint 

Current S2D4A / S2H4A  S258A 

Force - S2D4A & - S2H4A  S2D4A / S2H4A 

4.2. Implicit inclusion / exclusion 

Implicit relationships between option pairs can be either an 
inclusion, if the options must always occur together, or an 
exclusion, if the options may never occur together. The test 
operates iteratively, checking each pair of options in turn.    

For a given pair of options, inclusions are found by testing 
the contradiction, “Can one option be active, but not the other?” 
A pair of test expressions similar to those in Table 4 are 
appended to the BASESAT. If the solver returns 
UNSATISFIABLE, then the option pair has an inclusion 
relationship. 

Table 4. Implicit inclusion test expressions 

Rule Constraint 

Current -S323A  S323A 

Force S4FFA  -S4FFA 

Exclusions between the option pair are also found via 
contradiction, by testing the question, “Can both options be 
active simultaneously?” A pair of test expressions similar to 
those in Table 5 are appended to the BASESAT. If the solver 
returns UNSATISFIABLE then the option pair has an 
exclusion relationship. 

Table 5. Testing implicit exclusion 

Rule Constraint 

Force + -S5DPA  S5DPA 

Force + -S645A  S645A 

4.3. Part Family Allocation 

The part family allocation test verifies whether exactly one 
of the parts in the family is allocated for every vehicle. This 
result is achieved in two stages, first testing whether zero of the 
parts may be allocated, then testing whether two or more of the 
parts may be allocated.  

The first stage tests for contradiction, “Can all of the parts 
in the family be inactive?” A test expression similar to that in 
Table 6 is appended to the BASESAT, to force all parts in the 
family inactive. If the solver returns SATISFIABLE, then it is 
possible to build a vehicle using none of them. If the solver 



209 Bryan Pearce et al.  /  Procedia CIRP   44  ( 2016 )  204 – 209 

returns UNSATISFIABLE then the stage 1 test is passed, and 
stage 2 tests begin. 

Table 6. Part family activation 

Rule Constraint 

Force - 7292394 / +7292399  -7292394 & -7292399 

The second stage tests whether more than one of the parts in 
the family may be allocated for any vehicle. This result is 
achieved iteratively, checking each part in the family in turn. A 
direct proof is offered by the question, “If part i (chosen by 
iteration) is active, can another part in the family be active as 
well?” A test expression similar to that in Table 7 is appended 
to the BASESAT, to force one of the other parts to be active 
along with part i. If the solver returns SATISFIABLE for any 
of the iterated tests, then a configuration has been identified 
that calls more than one of the parts. Else, if the solver returns 
UNSATISFIABLE, then the stage 2 test is passed for this 
iteration. If all iterations return UNSATISFIABLE, the stage 2 
test is passed.  

Table 7. Testing multiple part inclusion from one part family 

Rule Constraint 

Force i -7292394  7292394 

Force 
another 

7292394  7292399 / 7292400 / 7292401 / 
7292402 / 7292403 / 7308905 

4.4. Part Family Matching 

Parts are commonly designed to fit with other specific parts. 
In this section scenarios are considered where parts from one 
family are designed to match with another family. The conflict 
tests whether mismatched parts may be found for any 
configured product. 

Consider an example scenario with four different part 
families. Let two part families hold parts related to exhaust tips, 
one family for round profiles and one family for rectangular. 
Let the other two part families hold parts related to bumpers, 
with one family for round exhaust holes and one family for 
rectangular exhaust holes. Geometry constraints require 
matching round bumpers with round exhaust tips, and 
rectangular with rectangular. 

A contradiction test is performed to ensure that mismatches 
cannot occur. A test expression similar to that in Table 8 is 
appended to the BASESAT, forcing one of the part families to 
be active, and forcing its matching family inactive. 

Table 8. Testing part family matching 

Rule Constraint 

Force Round Bumper -(RND BUMPER)  (RND BUMPER) 

Force Not Round Exhaust (RND EXHAUST)  -(RND 
EXHAUST) 

If the solver returns SATISFIABLE for this test, then a 
configuration has been identified with mismatched parts, 

suggested that there are errors in the part allocation rules that 
construct the BOM. 

5. Conclusion 

Changes to product offerings require updating a rule-based 
configurator’s knowledge base to reflect the change. Validating 
these changes entails checking that only the desired product 
configurations are available to the customer, as well as 
verifying that configurations call the correct parts when 
constructing the BOM. This paper presents a set of conflict 
classes, each of which corresponds to a potential failure mode 
of the configurator, and a formalized SAT search procedure for 
each type of conflict. 
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