
Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)
doi: 10.1016/j.procir.2016.02.127

 Procedia CIRP 44 (2016) 204 – 209

ScienceDirect

6th CIRP Conference on Assembly Technologies and Systems (CATS)

Configuration management through satisfiability

 Bryan Pearcea, Mary E. Kurza*, Keith Phelana, Joshua Summersa,

Jörg Schulteb, Wolfgang Dieminger b, Kilian Funkc
aClemson University, Clemson, SC 29634, United States

b BMW, Spartanburg SC United States
c BMW, Munich Germany

* Corresponding author. Tel.: +1-864-656-4652; E-mail address: mkurz@clemson.edu

Abstract

In a Build-to-Order environment, a configurator relays the taxonomy of customization choices to the customer, then translates these choices into
a bill of materials. Configuration Management (aka Variety Management) of the system entails validating proposed changes to the policies that
govern both configurator processes. We present a satisfiability approach to the problem, in which a suite of conflict classes are developed,
representing potential configurator failure modes. Satisfiability logic routines test the potential presence of each conflict class if the proposed
change is adopted, using an integrated constraint set including both part allocation and customization object relationships.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

 Keywords: Configuration Management, Variety Management; Satisfiability

1. Introduction

Over the last few decades, global markets for manufactured
goods have increasingly offered customizable products flexible
to customer preferences. To remain relevant in this shifting
economy, manufacturers have focused on mass customization
practices that support the increase in product variety while
retaining high production volumes [1][2].

Configuration management is the process of constructing
and managing a domain of product variety space that meets
customer needs. There are several component activities under
this umbrella, including assessing customer preferences and
product variant capabilities, and identifying specific product
configurations that meet demand [3]. These problems are
particularly difficult when the degree of customization choices
is high, as each configuration management problem grows
exponentially in response to each additional customization
choice. Product families are a common method for managing
this complexity, in which the domain of product variety space
is divided into an array of independent base product platforms,
each of which can be modified by the addition, subtraction, or
substitution of modular options [4]. Even with a product family

approach, however, maintaining product variety information
remains a challenge for highly customizable products [5].

Build-to-Order production allows customers to configure
their purchase personally, choosing from the domain of
offerings made by the manufacturer. If product variety is small,
with relatively few configuration alternatives, then the
customer may be presented with a catalog enumerating each
fully-configured offering. If product variety is high, however,
an enumeration approach is not possible. The German
automotive industry presents a compelling example, where

Fig. 1. Model of configuration variants in the automotive industry [7]

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)

205 Bryan Pearce et al. / Procedia CIRP 44 (2016) 204 – 209

vehicle configuration is a composite of many smaller
subsystem configuration problems, such as color of paint,
engine size, trim and badge options, etc. Taken as a whole, up
to unique offerings may exist for some vehicles [6]. Fig.
1 shows an example of configuration complexity in the
automotive industry. This diagram depicts the vehicle
configuration problem hierarchically according to the product
family approach, with platform at the topmost level and more
detailed configuration features below.

A configurator is a software alternative to catalogs that
divides the product configuration process into stages. In the
first stage the customer selects the platform, or base product. In
successive stages the customer is queried over a set of options
corresponding to one particular subsystem of the product. For
example, a vehicle configurator may first query for the model
(tagged name), then later query for engine and drivetrain
options, interior cabin options, etc. Once the customer
completes and submits an order, the configurator constructs a
bill of materials (BOM) by translating configuration choices
into a set of corresponding parts.

The manufacturer requires control over the choices rendered
by the configurator at each stage, to ensure that final configured
product conforms to technological or marketing specifications.
To this end, a rule-based reasoning technique guides the
configuration process. Rule-based reasoning encodes a set of
production rules, or constraint relationship between options,
usually expressed as conditions and consequences relating
options (if “A” then “B”). The configurator consults these
production rules between each stage, checks whether previous
customer choices meet the conditions of each rule, then
constructs the next configuration stage to only include those
choices that satisfy all rules. Another set of rules manages the
mapping of the configured product to part allocation. Examples
of rule-based configurators are given in [8][9][10].

Technology and market conditions change through time,
inducing changes in product offerings, parts usage, or both. In
operational terms, this entails making changes to the rule sets
that control the configurator customer interface, and the part
allocation processes that creates the BOM. The configuration
management task is to validate a candidate set of rule
alterations, to ensure that the alterations map correctly to the
intended change and don’t create unintended side effects, e.g.
an incorrect BOM for some product configuration.

The purpose of this paper is to develop support methods for
this validation process, based on needs identified in previously
published research. Section 2 summarizes the particular
motivating scenario. Section 3 provides the background for the
resulting validation process, which is described in Section 4,
with examples. Section 5 concludes the paper.

2. Motivation

A wide variety of configuration management techniques
have been developed to assist in the implementation. Phelan
et al [11] describe several methods as well as potential
challenges, which directly motivates the solution proposed
here. The remainder of this section summarizes the findings
of Phelan et al [11] for the convenience of the reader.

The foundation for the manufacturer’s configuration
management system is a rule database that contains the rules

governing the possible options and packages for a specific
vehicle, resulting in a rule-based configuration management
system. Production rules can be described as a set of
conditions and consequences (if “A” then “B”). Therefore,
the condition relates to an existing component or state of the
product which, if met, results in an execution of the
consequence action. An example of this would be as follows:
“If Part A is found in the configuration, then Part B cannot
be used in this configuration”. The scope of the rule database
(over one thousand rules per vehicle) makes it difficult to
ensure the accuracy of all of the rules and to ensure that the
rule database covers the complete set of feasible
configurations for each vehicle. Additionally, maintaining
the rule database, with either updates or changes, is equally
challenging due to the amount of possible change
propagation and ensuring that all necessary changes have
been made.

The rule database is used for at least three separate
functions in the company. First, it is used for the ordering of
vehicles which are all specified external from the
manufacturing site, either by a customer or a dealership.
Each vehicle built results from a selection of the possible
components or options that are available or feasible based on
location and other specified options. The tool used for
specifying the vehicles relies on the above rule database.
Second, the rules are used for part-ordering. Once a vehicle
has been ordered, a parts management system uses the
specified options to identify the parts that are required (and
therefore ordered from suppliers) for the vehicle. Third, the
line balancing utilizes the rules to accurately predict the time
utilized for each worker and station. Tasks that cannot occur
on the same vehicle do not contribute to the takt time and are
detected by “violations” of the rules in the database; the
larger of these task times should be used as the time for the
set of those tasks. As all of the systems rely on the rule
database, it is imperative that all of the rules are accurate and
complete.

The rule database is updated throughout time based on
marketing or engineering changes. Phelan et al report that
much of the verification process for rule change is based on
individual employee experience. For example, one employee
reported that his experience with different vehicle systems has
taught him to examine some areas more than others. Such
reports were typical in the case study. However, this type of
human verification is not feasible due to the scope of the rule
set. There are approximately 1,500 parts per vehicle, with
nearly 10 variants per component. Additionally, there are a
half dozen models with dozens of variants and scores of
options in configuring these components. Ultimately, there
are nearly 700 million possible configurations that must be
checked for feasibility periodically.

Over the course of the case study, the researchers
identified numerous opportunities for improvement, which
highlights the need for the work reported here. These are
classified as follows, a few with an example of a motivating
scenario.

“Rule conflict.” Is there a subset of two or more rules
such that no possible configuration may satisfy them?
“Object activation.” Can all options/parts/etc. that are
declared as being available for selection actually be
selected?

206 Bryan Pearce et al. / Procedia CIRP 44 (2016) 204 – 209

“Part family allocation.” For a given family of alternative
parts (e.g. all windshields), will one (and only one) of the
parts be allocated for every configuration? A vehicle was
being assembled for which there was no windshield. The
selected options result in a configuration that is not
feasible but this was not noted until the vehicle was in
production. The correct allocation of part types should
always result from each feasible vehicle configuration.
“Part family matching.” Consider a suite of several part
families, some of which are intended to match to others
for geometry or color reasons. Are the rules correctly
implemented, or is there a configuration that mismatches
parts? An exhaust system used with the diesel versions of
a particular model was determined (in assembly) to be
incompatible with a sports package due to a geometric
constraint with the included fog lights. A rule was created
to forbid the sports package and the specific exhaust
system on the same vehicle, preventing such errors in the
future. Months later, it was decided that the fog lights
should be unbundled from the sports package.
Unfortunately, the same production error resulted
(exhaust system and fog light physical conflict) because
the rule was not carried over from the sports package to
the fog lights.
“Antecedent satisfiability.” Are there any rules for which
the antecedent (IF- part) of the rule cannot be satisfied?
If so, then the effects of the rule are inconsequential, as
the rule is never active. This is a desirable test for rule
database pruning.
“Implicit relationships.” Are there any binary
inclusion/exclusion object relationships that are
implicitly enforced, through the collected effects of
explicit constraints? This was observed when a new rule
was created (and approved) which artificially limited the
possible windshield options for a given model. The added
rule disallowed the selection of the option for an anti-
glare strip on the windshield for certain models.
However, due to limitations with the parts, this meant
that the only allowable configuration for customers
desiring the anti-glare strip would also be required to
purchase the heads-up display option. There is no reason
for the two options to require the presence of the other
option but the two options were implicitly linked.

3. Rule structure and object ontology

Several different types of logical objects play a role in the
configurator processes. Although all objects are Boolean in
nature, being either present (true) or absent (false) on any final
product, there exist varying ontological relationships both
within and between object types. Quickly summarized, the five
object types are:

Options, conceptual optional modular features.
Classes, sets of mutually exclusive option alternatives
related to a single product feature.
Packages, aggregated sets of options.
Parts, the physical components assembled into the final
product.
Part families, sets of alternative parts for a single purpose,
only one of which may be used per product.

Options and parts are atomic objects. Parts are physical
entities as well as configuration objects, as part variables
correspond one-to-one with inventory items that may be
installed on the product. Options are conceptual representations
of elemental configurable features, e.g. roof racks on a vehicle.
The customer may either select an option or not, to express their
preference for each feature. The other three object types, other
than options and parts, are composite objects built from
multiple option or part objects.

Package objects are marketing-derived batches of options.
Packages are designed to allow a customer to quickly select a
large array of synergistic options simultaneously, rather than
individually choosing each individual option. For example, the
advanced electronics package on a vehicle might specify
selecting the heads-up display, backseat television screens, and
one of two top end stereo options (but not any lower-tier
stereos). Each of these options could be selected individually
by the customer, if the package is not selected. The configurator
presents packages to the customer at the start of each subsystem
configuration stage, to permit quick selection of options for that
subsystem.

Classes are used for product features that might intuitively
be thought of as a single variable with multiple possible values.
Rather than encoding such cases with a single multi-valued
option variable, instead each value is modeled as a separate
Boolean option object, and a class object is introduced that
contains all the member options. For example, the “color” class
may contain member red, yellow, and black Boolean option
variables. The ontology of a class object requires that all
members are mutually exclusive, allowing no more than one
member to be present on any configured product. Class objects
are also Boolean variables, and are true if some member option
is true, and false if all member options are false. Classes are not
exposed to the customer in the configurator, as they are
intended to help maintain the integrity of production rules.

Part families are collections of alternative, mutually
exclusive parts. Depending on the configuration selected, one
of an array of modular parts is installed to perform a given
function. Part families are similar to classes, except that part
family members are always parts and classes include only
options.

There are two types of production rules, corresponding to
the two sequential configurator processes. The first set of rules
governs interactions between options, classes, and packages,
and is consulted by the configurator during the configuration
process. These rules constrain the customer from configuring a
product which is disallowed, by specifying the domain of the
total configuration space that is permissible. The second set of
rules governs the translation of a configured product into a
BOM, by mapping each part to a set of conditions that call for
the part. The conditions for each part are functions of the
options and packages selected by the customer during the
configuration process.

3.1. Background for Boolean satisfiability implementation

This section is included for completeness for the reader.

207 Bryan Pearce et al. / Procedia CIRP 44 (2016) 204 – 209

3.1.1. Rendering production rules as Boolean expressions
All object ontologies and production rules are reduced to

first-order Boolean logic, a mathematical model and formal
grammar used for reasoning about the truth of logical
expressions. Boolean expressions are constructed as a series of
operators and literals, assembled according to a formal
grammar. Literals are Boolean objects, which are either true or
false, and include all configuration objects discussed in section
3. Operators are the logical functions OR, AND, and NOT,
used to conjoin literals into expressions. All configuration
constraints encoded in the configurator customer interface and
BOM translation subsystems are encoded as first-order
Boolean expressions, and each expression must be satisfied by
any valid configuration. Table 1 lists the components used to
render production rules as Boolean expressions.

Table 1. Grammar of Boolean expressions

Expression component Syntax Example

AND & (A & B) means “both A and B”

OR / (A / B) means “A or B”

NOT or - (-A) means “not A”

IMPLICATION (A B) means “if A, then B”

BICONDITIONAL (A B) means “A if and only
if B”

Literal <name> A is itself

Production rules that are written in if-then form require no
manipulation, as the format is
already a Boolean expression. To this set of rules are appended
additional Boolean expressions to reflect the relationships
implied by class, part family, and package ontologies.

Each class object requires exactly one of its member options
to be true. For each class, a Boolean expression is generated to
represent membership, e.g. . Next, a
set of Boolean expressions is generated to enforce exclusion
constraints between members, taking the form

 . Each part family generates exclusion and
membership expressions in the same way.

Packages are defined by expressions of the form
P7S2A (!S255A) & (!S4CKA / S4ADA / S4B8A) . The
antecedent of this implication is the package object, and the
consequence is the set of options that defines the package. Note
that the example consequence is clustered as a set of
parenthetical clauses, each beginning with a “!” mark. Each of
these clauses corresponds to a set of mutually exclusive
options. After selecting a package, the configurator will prompt
the customer to pick one option from each parenthetical clause.
Each exclusive clause must be transformed to first-order
Boolean logic. Consider the example clause !A / . After
transformation, the expression becomes

.

3.1.2. Boolean Satisfiability
If all literals are assigned a truth value, then a Boolean

expression containing them may be resolved to either true or
false. If, on the other hand, some or all of the literals are
unassigned, then the truth of the expression may be unresolved.
Validating the set of production rules requires checking that all
user-selectable configurations result in correctly specified,

buildable products. When working with Boolean expressions
that contain unspecified literals, a pertinent question may be “Is
there any set of true/false values for literals that results in the
expression resolving to true?” This question is known as the
Boolean satisfiability problem (SAT).

A series of breakthroughs in the early 2000s spurred the
development and proliferation of SAT solvers [12][13][14].
Industrial application of these tools to verification problems in
railroad, avionics, and automotive sectors followed shortly
thereafter [15][16]. These solvers take as input a set of Boolean
expressions, and search for some combination of literal values
that will “satisfy,” i.e. result in all expressions evaluating true.
If the solver finds that no possible combination of literal values
can satisfy all expressions, then the solver returns
UNSATISFIABLE. Otherwise, the solver returns
SATISFIABLE along with the values found for each literal.

SAT solvers generally require inputs in the DIMACS
conjunctive normal form (CNF) format. Each Boolean
expressions of the form discussed in section 3.1 may be
programmatically held in a binary parse tree data structure,
populated by a recursive descent parse of rule strings. Nodes in
a tree represent operators, with children nodes representing
operands. Each binary tree is transformed to CNF by following
these steps:

Transform “!” Exclusive-OR subtrees
Reduce binconditionals to two conditionals
Reduce conditionals to AND, OR, NOT
Propagate NOT downward towards leaves
Distribute AND over OR
SAT problems do not strictly require that all literals be

unspecified at the start. A partially specified SAT problem is
accomplished by appending an additional expression for each
literal that has an initial value. For example, appending the
expression “-A” will force solutions where A=false.

The general strategy of the validation methods below is to
construct a SAT problem instance (or suite of parallel SAT
instances) that is (are) equivalent to a conflict. The SAT
problem is then evaluated via the SAT solver. If the solver finds
a solution, then this means that there exists a set of literal
true/false values with which the conflict emerges.

4. Conflict Classes

The bulk of the contribution of this paper is presented in this
section, in which the rule database is subjected to various tests
based on which type of potential conflict is being considered.
The following subsections describe independent experimental
tests to check for potential conflicts arising after a change to
production rules. The general methodology for each conflict
detection method is to begin with all existing constraint
information, aggregated across all production rules and object
ontologies, as discussed in section 3. This union of production
rules is referred to as the BASESAT herein. Each conflict
detection method appends some test expression(s) to the
BASESAT for the particular conflict detection class, then
solves the SAT instance with a SAT solver. If a suite of tests is
performed serially then all test expressions are removed
between tests, resetting the BASESAT to its original state.

208 Bryan Pearce et al. / Procedia CIRP 44 (2016) 204 – 209

In each conflict class subsection below are details for
constructing test expressions and logic for interpretation of
SAT solver results, as well as example applications of each
conflict class.

4.1.1. Rule conflict
A rule conflict test checks whether the change has created a

conflict that prevents all rules from being satisfied
simultaneously. The method to perform this test is to append
the proposed change onto the BASESAT, and then apply the
SAT solver. If the solver returns UNSATISFIABLE, then the
change has created a conflict. If, on the other hand, the solver
returns SATISFIABLE, this is not sufficient evidence to
conclude that there are no problems with the change. There
might still be issues that could be detected by performing some
of the other conflict detection tests. For example, consider the
existing rule on the first row of Table 2, and suppose the change
is to induce the ruleTable 2 shown on row 2.

Table 2. Rule conflict example

Rule Constraint

Current L807A & S609A S6AEA

Proposed L807A & S609A -S6AEA

Although this pair of rules is clearly nonsense, the solver

will return SATISFIABLE if this experiment is performed. If
either rule is “active,” i.e. its antecedent is true, then the other
rule will be violated. However, the apparent conflict can be
avoided by the satisfiability routine, and a satisfying
configuration found, if both rules are inactive. In this case,
setting either option L807A or S609A to false will deactivate
both rules. Adding this new rule would effectively forbid any
valid configuration from having both L807A and S609A. See
section 4.1.3 for testing conflicts of this type.

4.1.2. Object activation
Object activation tests iteratively check each individual

object, to determine whether there exists a configuration for
which the object is active. An object is disabled if no possible
configuration activates the object. Disabled objects are
evidence of errors arising from the changes. The types of
objects considered may be divided into two categories, literals
and constraints. The following subsections discuss these.

4.1.2.1. Literal activation
Literals include parts, options, packages, and class objects.

Each literal is checked individually, to determine whether the
literal is active on some configuration. A single test expression
is appended to the BASESAT during each iteration, forcing the
literal to be active, e.g. . If the SAT solver
returns SATISFIABLE then the literal may be active. Else, if
UNSATISFIABLE is returned, then the literal is not permitted
on any configuration. Disabled literals are evidence of errors in
the implemented changes.

4.1.3. Antecedent Satisfiability
The antecedent is the “IF” portion of a rule. Testing

antecedent satisfiability verifies that a rule can be activated.

The scenario presented in section 4.1.1 showed a latent
conflict, causing rule deactivation. In cases such as this,
activating the rule results in no satisfying configurations. This
test iteratively tests each rule, by appending a forcing
expression for the rule to the BASESAT. For example, Table 3
shows an existing rule, and a corresponding test rule forcing it
to be active. If the solver returns SATISFIABLE for this test,
then the rule can be activated. Else, the proposed change has
forced the rule to be inert, and is evidence of a potential error.

Table 3. Antecedent satisfiability test expression

Rule Constraint

Current S2D4A / S2H4A S258A

Force - S2D4A & - S2H4A S2D4A / S2H4A

4.2. Implicit inclusion / exclusion

Implicit relationships between option pairs can be either an
inclusion, if the options must always occur together, or an
exclusion, if the options may never occur together. The test
operates iteratively, checking each pair of options in turn.

For a given pair of options, inclusions are found by testing
the contradiction, “Can one option be active, but not the other?”
A pair of test expressions similar to those in Table 4 are
appended to the BASESAT. If the solver returns
UNSATISFIABLE, then the option pair has an inclusion
relationship.

Table 4. Implicit inclusion test expressions

Rule Constraint

Current -S323A S323A

Force S4FFA -S4FFA

Exclusions between the option pair are also found via
contradiction, by testing the question, “Can both options be
active simultaneously?” A pair of test expressions similar to
those in Table 5 are appended to the BASESAT. If the solver
returns UNSATISFIABLE then the option pair has an
exclusion relationship.

Table 5. Testing implicit exclusion

Rule Constraint

Force + -S5DPA S5DPA

Force + -S645A S645A

4.3. Part Family Allocation

The part family allocation test verifies whether exactly one
of the parts in the family is allocated for every vehicle. This
result is achieved in two stages, first testing whether zero of the
parts may be allocated, then testing whether two or more of the
parts may be allocated.

The first stage tests for contradiction, “Can all of the parts
in the family be inactive?” A test expression similar to that in
Table 6 is appended to the BASESAT, to force all parts in the
family inactive. If the solver returns SATISFIABLE, then it is
possible to build a vehicle using none of them. If the solver

209 Bryan Pearce et al. / Procedia CIRP 44 (2016) 204 – 209

returns UNSATISFIABLE then the stage 1 test is passed, and
stage 2 tests begin.

Table 6. Part family activation

Rule Constraint

Force - 7292394 / +7292399 -7292394 & -7292399

The second stage tests whether more than one of the parts in
the family may be allocated for any vehicle. This result is
achieved iteratively, checking each part in the family in turn. A
direct proof is offered by the question, “If part i (chosen by
iteration) is active, can another part in the family be active as
well?” A test expression similar to that in Table 7 is appended
to the BASESAT, to force one of the other parts to be active
along with part i. If the solver returns SATISFIABLE for any
of the iterated tests, then a configuration has been identified
that calls more than one of the parts. Else, if the solver returns
UNSATISFIABLE, then the stage 2 test is passed for this
iteration. If all iterations return UNSATISFIABLE, the stage 2
test is passed.

Table 7. Testing multiple part inclusion from one part family

Rule Constraint

Force i -7292394 7292394

Force
another

7292394 7292399 / 7292400 / 7292401 /
7292402 / 7292403 / 7308905

4.4. Part Family Matching

Parts are commonly designed to fit with other specific parts.
In this section scenarios are considered where parts from one
family are designed to match with another family. The conflict
tests whether mismatched parts may be found for any
configured product.

Consider an example scenario with four different part
families. Let two part families hold parts related to exhaust tips,
one family for round profiles and one family for rectangular.
Let the other two part families hold parts related to bumpers,
with one family for round exhaust holes and one family for
rectangular exhaust holes. Geometry constraints require
matching round bumpers with round exhaust tips, and
rectangular with rectangular.

A contradiction test is performed to ensure that mismatches
cannot occur. A test expression similar to that in Table 8 is
appended to the BASESAT, forcing one of the part families to
be active, and forcing its matching family inactive.

Table 8. Testing part family matching

Rule Constraint

Force Round Bumper -(RND BUMPER) (RND BUMPER)

Force Not Round Exhaust (RND EXHAUST) -(RND
EXHAUST)

If the solver returns SATISFIABLE for this test, then a
configuration has been identified with mismatched parts,

suggested that there are errors in the part allocation rules that
construct the BOM.

5. Conclusion

Changes to product offerings require updating a rule-based
configurator’s knowledge base to reflect the change. Validating
these changes entails checking that only the desired product
configurations are available to the customer, as well as
verifying that configurations call the correct parts when
constructing the BOM. This paper presents a set of conflict
classes, each of which corresponds to a potential failure mode
of the configurator, and a formalized SAT search procedure for
each type of conflict.

References

[1] G. Da Silveira and D. Borensein, "Mass Customization: Literature review
and research directions," International Journal of Production Economics,
vol. 72, no. 1, pp. 1-13, 2001.

[2] L. F. Scavarda, A. Reichhart, S. Hamacher and M. Holweg, "Managing
product variety in emerging markets," International Journal of
Operations & Production Management, vol. 30, no. 2, pp. 205-224, 2010.

[3] Tidstam and J. Malmqvist, "Information Modelling for Automotive
Configuration," in NordDesign, G teborg, Sweden, 2010.

[4] J. R. Jiao, T. W. Simpson and Z. Siddique, "Product family design and
platform-based product development," Journal of Intelligent
Manufacturing, vol. 18, no. 1, pp. 5-29, 2007.

[5] R. S. Renu and G. M. Mocko, "Decision Support Systems for Assembly
Line Planning: modular Subsystems for a largescale Production
Management System," Clemson, SC, 2013.

[6] H. Meyr, "Supply Chain Planning in the German Automotive Industry,"
OR Spectrum, vol. 26, pp. 447-470, 2004.

[7] E. Knippel and A. Schulz, "Lessons learned from implementing
configuration management within electrical/electronic development of an
automotive OEM," in Proceedings of 4th Annual Symposium of INCOSE,
Toulouse, France, 2004.

[8] Choi and S. Bae, "An Architecture for Active Product Configuration
Management in Industrial Virtual Enterprises," International Journal of
Advanced Manufacturing Technology, vol. 18, no. 2, pp. 133-139, 2001.

[9] H. Andersson, S. Steinkellner and H. Erlandsson, "Configuration
Management of Models for Aircraft Simulation," in Proceedings of the
27th International Congress of the Aeronautical Sciences, 2010.

[10] R. Raffaeli, M. Mengoni, M. Germani and F. Mandorli, "An Approach to
Support the Implementation of Product Configuration Tools," in ASME
Design Engineering Technical Conference, San Diego, CA, 2009.

[11] K. Phelan, C. Wilson, J. D. Summers, M. E. Kurz, “A case study of
configuration management methods in a major automotive OEM,” in
Proceedings of the 2014 International Design Eningeering Technical
Conference, Buffalo NY USA, 2014 (DETC2014-34186).

[12] E. Goldberg and Y. Novikov, "A fast and robust sat-solver," in
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Paris, 2002.

[13] Marques-Silva and K. Sakallah, "GRASP: A search algorithm for
propositional satisfiability," IEEETC: IEEE Transactions on Computers,
vol. 48, 1999.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik,
"Chaff: Engineering an efficient SAT solver," DAC, 2001.

[15] M. Penicka, "Formal approach to railway applications," Formal Methods
and Hybrid Real-Time Systems, pp. 504-520, 2007.

[16] Hammarberg and S. Nadjm-Tehrani, "Formal verification of fault
tolerance in safety-critical reconfigurabe modules," Journal of Software
Tools for Technology Transfer, vol. 7, no. 3, pp. 268-279, 2005.

