
Operations Research Letters 45 (2017) 210–216
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Solving the traveling salesman problem with interdiction and
fortification
Leonardo Lozano, J. Cole Smith ∗, Mary E. Kurz
Department of Industrial Engineering, Clemson University, 100 Freeman Hall, PO Box 340920, Clemson, SC 29634-0920, United States

a r t i c l e i n f o

Article history:
Received 3 May 2016
Received in revised form
20 February 2017
Accepted 20 February 2017
Available online 1 March 2017

Keywords:
Interdiction
Integer programming
Traveling salesman problem

a b s t r a c t

We solve a defender-attacker-defender problem over a traveling salesman problem (TSP), in which the
defender first acts to defend a subset of arcs, the attacker then interdicts a subset of undefended arcs (thus
increasing their costs), and the defender solves a TSP over the remaining network. Our approach employs
an exact approach augmentedwith a TSP restriction phase to accelerate the convergence of the algorithm.
Our computational results show success for the first time in optimally solving defender-attacker-defender
TSP problems.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The traveling salesman problem (TSP) is a well-known
N P -hard problem that seeks a minimum-cost Hamiltonian cy-
cle (tour) over a graph [9,12]. We present the traveling salesman
problem with interdiction and fortification (TSPIF), modeled as a
defender-attacker-defender problem. In the first stage (fortifica-
tion), the defender fortifies a subset of arcs. In the second stage
(attack), an attacker interdicts a subset of unprotected arcs, thus in-
creasing their cost. In the third stage (recourse), the defender solves
a TSP defined using the costs resulting from the attack stage. In this
context, an attack is not necessarily due to a malicious adversary,
but could represent some boundedworst-case scenario on arc cost
uncertainty. The TSPIF also arises as an alternative conservative ap-
proach to modeling routing problems under uncertainty, in which
the road travel times may not be known in advance due to conges-
tion effects [16].

The TSPIF may occur in a defense scenario in which troops need
to monitor a set of locations and return to a base. If the troops
wish to perform these tasks as quickly as possible, they solve a
TSP. An adversary might attempt to impair the troops’ movement
by degrading (interdicting) roadways or bridges. The adversary’s
actions could be anticipated by the troops, who secure pathways
ahead of time by stationing personnel or other resources to deter
interdictions. Hence, the troops act first to fortify arcs, after which

∗ Corresponding author.
E-mail address: jcsmith@clemson.edu (J.C. Smith).
URL: http://jcsmith.people.clemson.edu (J.C. Smith).

http://dx.doi.org/10.1016/j.orl.2017.02.007
0167-6377/© 2017 Elsevier B.V. All rights reserved.
the adversary interdicts unfortified arcs, and the troops respond by
solving a TSP on the resulting network.

We formally define the TSPIF on a directed graph G = (N , A),
where N is the set of nodes and A ⊂ N × N is the set of arcs.
For each arc (i, j) ∈ A, let cij ≥ 0 be the cost of traversing an
uninterdicted arc and dij ≥ 0 be the additional cost (delay) in-
curred when traversing an interdicted arc. Thus, the total cost of
traversing an interdicted arc is cij + dij. Letw ∈ W be the fortifica-
tion decision variables, where W ≡


w | Tw ≤ b, w ∈ {0, 1}|A|


ensures that the variables are binary and enforces a set of linear
constraints that limits the extent to which the defender can for-
tify arcs. Let x ∈ X(w) be the attack decision variables, where
X(w) ≡


x | T′x ≤ b′, xij ≤ 1− wij, ∀(i, j) ∈ A, x ∈ {0, 1}|A|


forces the x-variables to be binary, ensures that only unfortified
arcs are interdicted, and imposes a set of linear constraints that
models the ability of the attacker to interdict arcs. Finally, let y be a
vector of binary arc-selection variables such that yij = 1 if arc (i, j)
is used in the optimal tour identified for the recourse problem, and
yij = 0 otherwise, for all (i, j) ∈ A. We restrict y ∈ Y, where Y in-
cludes the set of binary vectors y that correspond to TSP solutions
in G. The TSPIF can be formally stated as:

z∗ = min
w∈W

max
x∈X(w)

min
y∈Y


(i,j)∈A

(cij + dijxij)yij, (1)

where in the objective function (1), the original cost of any arc is
increased by dij when the arc is attacked (i.e., xij = 1).

Previous studies on defender-attacker-defender problems in-
clude enumerative schemes [6,7,19,20], decomposition approaches
based on supervalid inequalities [15,22], and approaches based
on strong duality [5,17,21]. The latter approaches combine the

http://dx.doi.org/10.1016/j.orl.2017.02.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.02.007&domain=pdf
mailto:jcsmith@clemson.edu
http://jcsmith.people.clemson.edu
http://jcsmith.people.clemson.edu
http://jcsmith.people.clemson.edu
http://jcsmith.people.clemson.edu
http://jcsmith.people.clemson.edu
http://dx.doi.org/10.1016/j.orl.2017.02.007

L. Lozano et al. / Operations Research Letters 45 (2017) 210–216 211
second- and third-stage problems by taking the dual of the third-
stage problem, and then solve the resulting problem using a
Benders’ decomposition algorithm in which the subproblem is a
mixed-integer programming problem (MIP). Since the TSP is a non-
convex combinatorial problem, we do not combine the second-
and third-stage problems, because no polynomial-size strong dual
formulation for the TSP is known to exist. In response to this prob-
lem, Lozano and Smith [14] propose a backward sampling frame-
work (BSF) for interdiction problemswith fortification inwhich the
recourse problemcan take any form. They solve defender-attacker-
defender games played over shortest path (SPIF) and capacitated
lot sizing problems (CLSIF). The BSF significantly outperforms prior
approaches for solving the SPIF, and yields an effective mechanism
for solving interdiction and fortification problems. However, the
design of practically effective algorithms for interdiction and for-
tification problems defined over a strongly N P -hard problem like
the TSP is still an open research question.

In this paper we explore the solution of the TSPIF via the
BSF. Our contribution analyzes two problem restrictions, where
both restrictions serve as a heuristic for the TSPIF and model the
situation in which the defender lacks the computational resources
to compute an optimal response to an attack.We also demonstrate
that these restrictions are instrumental in reducing computational
time for solving the TSPIFwithin an exact two-phase approach.We
then use these developments to tailor a BSF-based approach for
this problem, and demonstrate the efficacy of our approach using
TSP instances from the literature.

2. The backward sampling framework for the TSPIF

Our algorithm is composed of an outer cutting-plane approach
that optimizes the defense decisions and an inner sampling-based
optimization algorithm that solves the corresponding two-level
problem. The inner algorithm restricts the defender to select a
recourse decision from a sample of TSP tours over G and iteratively
refines the sample to force finite convergence to an optimal
solution.

2.1. Solving the TSPIF

Our outer algorithm evaluates defense vectors w ∈ W that
eliminate critical attacks. An attack x̂ is critical if

zR(x̂) = min
y∈Y


(i,j)∈A

(cij + dijx̂ij)yij ≥ z∗, (2)

i.e., if the objective function value of an optimal TSP tour given an
attack vector x̂ is greater than or equal to z∗. We add a covering
constraint (also known as a ‘‘no-good constraint’’ [4]) of the form
wᵀx̂ ≥ 1 to the fortification problem for each critical attack x̂,
forcing the defender to protect at least one of the arcs interdicted
by x̂.

Our inner algorithm solves the corresponding two-level inter-
diction problem for every defense vector ŵ ∈ W selected by the
outer algorithm:

Q(ŵ) : z I(ŵ) = max
x∈X(ŵ)

min
y∈Y


(i,j)∈A

(cij + dijxij)yij. (3)

We assume that X(w) ≠ ∅, ∀w ∈ W , and so an optimal solution
to (3) must exist.

Since problem Q(ŵ) does not belong to N P unless P = N P ,
our algorithm relies on a sampling procedure that iteratively solves
a series of restricted problems whose solutions converge to an
optimal solution to Q(ŵ). Let Ŷ ⊆ Y be a sample of TSP tours over
G and

Q(ŵ, Ŷ) : z I(ŵ, Ŷ) = max
x∈X(ŵ)

min
y∈Ŷ


(i,j)∈A

(cij + dijxij)yij (4)
be the restricted problem in which recourse decisions are
restricted to Ŷ. For a given ŵ ∈ W and a sample of tours Ŷ ⊆ Y, we
formulateQ(ŵ, Ŷ) as aMIP. LetT k be the set of arcs corresponding
to the kth tour in sample Ŷ, and let c(T k) denote its cost. We
formulate Q(ŵ, Ŷ) as follows:

z I(ŵ, Ŷ) = max z (5)

s.t. z ≤ c(T k)+


(i,j)∈T k

dijxij ∀T k
∈ Ŷ (6)

x ∈ X(ŵ). (7)

The objective function (5) maximizes z, which is constrained by
(6) to be no more than the least-cost tour in Ŷ, after considering
additional costs caused by arc interdiction. Constraints (7) restrict
x to the set of feasible attacks.

For any ŵ ∈ W and sample of tours Ŷ ⊆ Y, z I(ŵ, Ŷ) is an upper
bound on z I(ŵ), which is in turn an upper bound on z∗. Lower
bounds can be obtained by solving a TSP to calculate zR(x̂) for any
x̂ ∈ X(ŵ). Combining these inequalities, we obtain:

zR(x̂) ≤ z I(ŵ) ≤ z I(ŵ, Ŷ), ∀ŵ ∈ W, x̂ ∈ X(ŵ), Ŷ ⊆ Y.

Thus, if (x̂, ŷ) solves Q(ŵ, Ŷ) and z I(ŵ, Ŷ) = zR(x̂), then (x̂, ŷ)
solves Q(ŵ) [14].

Algorithm 1 presents the proposed approach. LetC be the set of
covering constraints added to the (outer) fortification problem and
W(C) = {w ∈ W | w satisfies all constraints in C}. The algorithm
starts with an empty set of covering constraints and a global upper
bound z̄ = ∞. Line 2 selects an initial sample of tours over G. The
outerwhile-loop (line 4) is executed until the fortification problem
becomes infeasible. Line 5 selects a feasible defense ŵ and lines
6–21 solve the corresponding problem Q(ŵ) with our proposed
sampling approach. The inner while-loop (line 7) is executed until
the global upper bound cannot be further reduced by the current
choice of ŵ. Line 9 obtains an upper bound on z I(ŵ) by solving
the restricted problem Q(ŵ, Ŷi) and obtaining an attack vector
x̂ ∈ X(ŵ). Line 10 solves a TSP given the fixed attack x̂. The
optimal tour, ŷ∗, identified in this step yields a lower bound. Line
11 defines the sample at the next iteration as the solutions in the
previous sample along with ŷ∗. Line 12 checks if UBi reduces the
current global upper bound; if so, then line 13 updates the global
upper bound, and line 14 removes from the sample all tours whose
cost is greater than z̄. Line 15 determines if attack x̂ is critical by
checking if LBi ≥ z̄, and if so, line 16 adds a covering constraint
to the fortification problem. Finally, if the optimality condition is
satisfied (line 18), then line 19 updates the incumbent solution.

2.2. Sampling TSP tours

The only condition on the initial sample to ensure that our
algorithm terminates with an optimal solution is that Ŷ1

⊆

Y. However, Ŷ1 impacts the performance of the BSF since both
the tightness of the upper bounds obtained by solving restricted
problems Q(ŵ, Ŷi) and the number of constraints in formulation
(5)–(7) depend on the choice of Ŷ1.

We now describe desirable features for a choice of Ŷ1. Tours in
Ŷ1 should be diverse in the sense that they do not contain toomany
of the same arcs, or else the attacker could interdict many tours in
the sample by interdicting a few arcs common to those tours. Tours
in Ŷ1 should also be optimal or near-optimal solutions to the TSP
when x̂ = 0. Finally, if |Ŷ1

| is too large, then formulation (5)–(7)
will be large as well, and may potentially be too difficult to solve.

Attempting to achieve a balance between the desirable features
listed, we propose a genetic algorithm (GA) based on the NSGA-II
framework [8] in which each solution has two objectives, both of

212 L. Lozano et al. / Operations Research Letters 45 (2017) 210–216
Algorithm 1 Backward sampling framework for the TSPIF
1: Set the global upper bound z̄ = ∞ and covering constraints set

C = ∅ ◃ Initialization
2: Select Ŷ1

⊆ Y as a sampling of tours fromG, and compute their
objective values

3: Set counter i = 0
4: while W(C) ≠ ∅ do ◃Main while-loop
5: Select any ŵ ∈ W(C)
6: Initialize LBi = −∞

7: while LBi < z̄ do
8: Set i = i+ 1
9: Solve Q(ŵ, Ŷi), set UBi = z I(ŵ, Ŷi), and record an

optimal solution (x̂, ŷ)
10: Solve LBi = zR(x̂) = min

y∈Y


(i,j)∈A

(cij + dijx̂ij)yij and obtain

an optimal tour ŷ∗
11: Set Ŷi+1

= Ŷi
∪ {ŷ∗}

12: if UBi < z̄ then
13: Update global upper bound z̄ ← UBi
14: Remove from Ŷi+1 all tours having cost greater than

z̄
15: else if LBi ≥ z̄ then ◃ A critical attack has been identified
16: Add the covering constraintwᵀx̂ ≥ 1 to C
17: end if
18: if LBi = UBi = z̄ then
19: Update the incumbent solution (w̄, x̄, ȳ) ←

(ŵ, x̂, ŷ)
20: end if
21: end while
22: end while
23: Return (w̄, x̄, ȳ)

which are to be minimized. The first objective is the tour length
with respect to the uninterdicted graph. The second objective is a
measure of the individual solution’s similarity to some reference
set of TSP tours. We include in our reference set all tours whose
length is notmore than ϵ percent greater than the best tour-length
seen so far. We compute our second objective as the number of
times each solution arc appears in the reference set, divided by
the total number of arcs in the set population. A solution that has
no arcs in common with any tour in the reference set is in some
manner ‘‘maximally different’’ and is desirable, having a second
objective of 0. (The implementation details for the GA are available
from the authors.)

Alternatively, one simple option is to seed Ŷ1 with one TSP tour.
In this case we solve the TSP when x̂ = 0, and use only that tour in
our initial sample.

2.3. Alternative restrictions for the recourse problem

We now present two restrictions for the recourse problem
that model the case in which the defender must compute a
quick response to an attack, rather than expending the computa-
tional resources required to compute an optimal response. These
restrictions are also instrumental in devising a more computation-
ally effective exact TSPIF algorithm.

The first restriction is inspired by very large-scale neighborhood
search algorithms [1]. We start with a base tour y∗ obtained by
solving the TSP to optimality given costs cij, ∀(i, j) ∈ A. For the
symmetric case, the defender recourse responses are restricted to
belong to the set of tours that can be obtained by performing a
series of so-called disjoint 2-opt swaps on y∗. (See Remark 1 for
an extension of this idea for the asymmetric case.) To understand
the concept of disjoint 2-opt swaps, we first order the nodes in
tour y∗ as v(1), v(2), . . . , v(|N |). Let v(|N |+1) ≡ v(1). A 2-opt swap
Fig. 1. Graphical representation of a 2-arc swap for the symmetric case.

is performed by identifying two tour indices i and j, where i ≥ 1,
j ≤ |N | + 1, and i + 3 ≤ j. The tour formed by a 2-arc swap
replaces arcs (v(i), v(i+1)) and (v(j−1), v(j)) with arcs (v(i), v(j−1))
and (v(i+1), v(j)) in the original tour. Arcs (v(k), v(k+1)), k = i +
1, . . . , j − 2, would now be traversed in the opposite direction
after the symmetric 2-opt arc swap. (See Fig. 1 for an illustration.)
A set of 2-opt swaps is disjoint if the 2-opt swaps are performed
over indices (i1, j1), (i2, j2), . . . , (ik, jk) such that jh ≤ ih+1, ∀h =
1, . . . , k− 1.

We model the disjoint 2-opt swap restriction on y∗ by trans-
forming the recourse problem into a shortest path problem de-
fined over a new graph G′ = (N ′, A′). The set of nodes
N ′ = {1, . . . , |N | + 1} represents each ordered node in tour y∗,
where |N | + 1 is a duplicate of the first node. The set of arcs
A′ = A′1 ∪ A′2 comprises two kinds of arcs. Arcs in A′1 =
(i, i+ 1) | i ∈ N ′, i ≤ |N |


correspond to arcs in the original

tour y∗. Accordingly, we define their cost as c ′ij = cv(i)v(j) and delay
for a given attack x as d′ij = dv(i)v(j)xv(i)v(j) , for all (i, j) ∈ A′1. Arcs in
A′2 = {(i, j) | ∀i = 1, . . . , |N | − 2, j = i+ 3, . . . , |N | + 1} rep-
resent a 2-opt swap as illustrated in Fig. 1. For arc (i, j) ∈ A′2 the
cost and delay for a given attack x are defined as:

c ′ij = cv(i)v(j−1) + cv(i+1)v(j) +

j−1
k=i+2

cv(k)v(k−1) ∀(i, j) ∈ A′2 (8)

d′ij = dv(i)v(j−1)xv(i)v(j−1) + dv(i+1)v(j)xv(i+1)v(j)

+

j−1
k=i+2

dv(k)v(k−1)xv(k)v(k−1) ∀(i, j) ∈ A′2, (9)

respectively. Note that the third term in Eqs. (8) and (9) accounts
for the arcs traversed from v(i+1) to v(j−1) in the original tour,
though in the reverse direction.

Every path from 1 to |N | + 1 in G′ corresponds to a TSP tour in
the original graph G. These paths encode the original tour y∗ along
with all solutions that can be obtained via disjoint 2-opt swaps
from that tour.

Remark 1. For the asymmetric case, arcs inA′1 are given as before.
Arcs (i, j) ∈ A′2 represent a 3-arc swap that replaces arcs
(v(i), v(i+1)), (v(q), v(q+1)), and (v(j−1), v(j)) with arcs (v(i), v(q+1)),
(v(j−1), v(i+1)), and (v(q), v(j)) in the original tour, where

q ∈ argmin
i+1≤q̄≤j−2

{cv(i)v(q̄+1) + cv(j−1)v(i+1)

+ cv(q̄)v(j) − cv(i)v(i+1) − cv(q),v(q+1) − cv(j−1)v(j)}. (10)

Note that q is chosen in (10) so that the perturbed route
corresponding to arc (i, j) ∈ A′2 is as close to optimal as possible
with respect to the uninterdicted graph.

Cost and delay attributes are defined analogous to the
symmetric case:

c ′ij = cv(i)v(q+1) + cv(j−1)v(i+1) + cv(q)v(j) +

j−2
k=q+1

cv(k)v(k+1)

+

q−1
k=i+1

cv(k)v(k+1) ∀(i, j) ∈ A′2

d′ij = dv(i)v(q+1)xv(i)v(q+1) + dv(j−1)v(i+1)xv(j−1)v(i+1) + dv(q)v(j)xv(q)v(j)

L. Lozano et al. / Operations Research Letters 45 (2017) 210–216 213
+

j−2
k=q+1

dv(k)v(k+1)xv(k)v(k+1) +

q−1
k=i+1

dv(k)v(k+1)xv(k)v(k+1)

∀(i, j) ∈ A′2. �

We also consider a second restriction that constrains the
defender to solve the recourse problem using the Lin–Kernighan
heuristic (LKH) [13]. Note that the first restriction is modeled as
a network flow problem, which can then be solved using existing
network interdiction and fortification algorithms [6,11]. On the
other hand, the second restriction will most likely yield a stronger
upper bound given the success of the LKH in obtaining near-
optimal TSP solutions, but the restriction cannot practically be
modeled as a linear program.

2.4. Two-phase approach

Wedevise a two-phase approach that first solves a restriction of
the TSPIF to identify a set of covering constraints, an initial sample
of tours, and an upper bound on z∗. This first phase is based on the
solution of a heuristic TSP restriction, and provides a warm start to
exactly solve the problem using Algorithm 1 in a second phase.

Algorithm 2 describes our proposed two-phase approach. Line
1 solves a restriction of the TSPIF using a variation of Algorithm
1 in which one of the proposed restrictions in Section 2.3 is used
to compute recourse solutions. We record an optimal solution,
(w0, x0, y0), and the set of all critical attacks explored, X̂, solving
this restricted problem. Note that even though attacks in X̂
are critical for the restricted problem, they are not necessarily
critical for the original (exact) problem. Line 2 solves to optimality
the interdiction problem corresponding to w0 (using our inner
sampling-based algorithm) and line 3 updates the upper bound
and incumbent solution accordingly. Lines 5–11 explore all attacks
x̂ ∈ X̂ to generate the initial sample and possibly identify covering
constraints. For every x̂ ∈ X̂, line 6 solves a TSP to find an optimal
recourse tour ŷ∗ and calculates zR(x̂). Line 7 adds ŷ∗ into the initial
sample. Line 8 determines if attack x̂ is critical by checking if
zR(x̂) ≥ z̄. If so, then line 9 adds a covering constraint to the
fortification problem. Finally, line 12 continues solving the TSPIF
using Algorithm 1, starting with an initial sample Ŷ1, a covering
constraint set C, and an upper bound z̄.

Algorithm 2 Two-phase algorithm for the TSPIF
1: Obtain an optimal solution (w0, x0, y0) to a restriction of the

TSPIF and let X̂ be the set of all critical attacks identified in the
solution process ◃ Begin phase one

2: Obtain an optimal solution (x∗, y∗) to Q(w0)
3: Set z̄ = z I(w0) and update the incumbent solution (w̄, x̄, ȳ)←

(w0, x∗, y∗)
4: Initialize sample Ŷ1

= ∅ and covering constraints set C = ∅
◃ Begin phase two

5: for x̂ ∈ X̂ do
6: Solve zR(x̂) = min

y∈Y


(i,j)∈A

(cij+dijx̂ij)yij and obtain an optimal

tour ŷ∗
7: Add ŷ∗ into Ŷ1

8: if zR(x̂) ≥ z̄ then ◃ A critical attack has been identified
9: Add the covering constraintwᵀx̂ ≥ 1 to C

10: end if
11: end for
12: Solve the TSPIF using Algorithm 1 warm-started with Ŷ1, C,

and z̄
3. Computational results

We coded our algorithm in Java, using Eclipse SDK version 4.4.2,
and executed all computational experiments on a machine having
an Intel Core i7-3537U CPU (two cores) running at 2.00 GHz with
8 GB of RAM on Windows 8. We solve the TSP instances using
CONCORDE [2,3], all other optimization problems using Gurobi
5.6.0, and use the LKH implementation provided by [10].

Our set of test instances consists of 100 instances derived from
10 networks (5 symmetric and 5 asymmetric) from TSPLIB [18].
In every instance the cost coefficient for arc (i, j) ∈ A corre-
sponds to the distance between nodes i and j in the original net-
work. The delay coefficient for arc (i, j) ∈ A is initially taken
to be a random integer uniformly distributed between [1, cij].
We generate 10 instances with random arc delay coefficients for
each of the original networks. We define the defender’s feasi-
ble region as W ≡


w | eᵀw ≤ Q , w ∈ {0, 1}|A|


, which en-

forces a cardinality constraint on the number of fortified arcs and
ensures that the variables are binary. We also define X(w) ≡
x | eᵀx ≤ B, xij ≤ 1− wij, ∀(i, j) ∈ A, x ∈ {0, 1}|A|


, which en-

sures that a maximum of B unfortified arcs are interdicted, and
forces the x-variables to be binary.

3.1. Solving the TSPIF

We compared four versions of the proposed algorithm. The first
one (one-tour sampling) initializes the sample as a single tour
that optimizes the TSP when no arcs have been interdicted. The
second one (GA sampling) implements the proposed GA sampling
scheme. The third one (two-phase 2-opt) implements the two-
phase algorithm in Section 2.4 with the 2-opt restriction, and the
fourth one (two-phase LKH) implements the two-phase algorithm
with the LKH restriction. We solve each instance three times with
different budget configurations (Q , B) in {(3, 3), (5, 4), (4, 5)} for
a total of 300 experiments for each version of the algorithm.

Table 1 shows the results for these experiments. The first five
rows present results for symmetric instances and the last five
rows for asymmetric instances. The columns present the average
CPU time in seconds obtained over 10 instances derived from the
same network (Avg), the largest CPU time obtained over those
runs (Max), and the number of instances solved within a four-hour
time limit (# solved) for the four versions of the algorithm. We
calculate the average CPU time only among the instances solved
within the time limit and report an overall CPU time average for
the symmetric and asymmetric instances. For each row, the best
average and maximum CPU times are highlighted in bold.

Table 1 shows that two-phase LKH outperforms the other
algorithms. For the symmetric instances, two-phase LKH is on
average about 40% faster than one-tour sampling and two-phase
2-opt, and about 65% faster than GA sampling. However, there is
one instance from network gr96 that none of the algorithms solve
within the time limit. For the harder asymmetric instances, two-
phase LKH is on averagemore than two times faster than the other
algorithms. The maximum CPU times follow a similar behavior.

3.2. Assessing the effectiveness of the proposed restrictions

Table 2 compares two-phase 2-opt and two-phase LKH when
Q = 4 and B = 5, which was the most difficult budget
configuration in Table 1. We omitted instance gr96, which was not
solved to optimality. Column ‘‘z∗’’ presents the average optimal
objective value obtained over the instances derived from the same
network. The remaining columns show the average upper bound
obtained at the end of phase one (z̄), the average objective function
value gap, calculated as (z̄ − z∗)/z∗ × 100 (% Gap), the average
CPU time in seconds for phase one (I), the average CPU time for

214 L. Lozano et al. / Operations Research Letters 45 (2017) 210–216
Table 1
Comparing four different versions of our proposed algorithm for solving the TSPIF.

Instance Arcs Q B One-tour sampling GA sampling Two-phase 2-opt Two-phase LKH
Avg Max # solved Avg Max # solved Avg Max # solved Avg Max # solved

bayg29 406 3 3 10 22 10 15 30 10 12 24 10 7 16 10
5 4 48 103 10 61 123 10 47 105 10 40 87 10
4 5 99 302 10 119 218 10 101 213 10 82 167 10

hk48 1128 3 3 10 24 10 18 37 10 13 26 10 7 17 10
5 4 63 213 10 94 330 10 72 224 10 50 156 10
4 5 151 666 10 212 878 10 197 821 10 140 721 10

brazil58 1653 3 3 15 30 10 24 48 10 19 60 10 12 23 10
5 4 63 149 10 107 261 10 72 232 10 55 138 10
4 5 137 368 10 215 738 10 159 527 10 118 458 10

eli76 2850 3 3 32 53 10 42 72 10 43 74 10 22 51 10
5 4 174 295 10 231 460 10 174 295 10 119 298 10
4 5 379 797 10 565 1294 10 445 892 10 378 1172 10

gr96 4560 3 3 222 523 10 238 628 10 235 554 10 124 389 10
5 4 1913 9088 10 2061 9534 10 1938 8250 10 1411 7762 10
4 5 3351 >14,400 9 3938 >14,400 9 3391 >14,400 9 2249 >14,400 9

Overall average 444 529 461 321

Asymmetric instances

br17 272 3 3 2 3 10 3 3 10 3 3 10 2 2 10
5 4 6 7 10 5 6 10 8 10 10 5 6 10
4 5 7 9 10 6 8 10 10 11 10 6 8 10

p43 1806 3 3 222 287 10 197 248 10 194 242 10 111 153 10
5 4 409 620 10 421 681 10 464 589 10 246 361 10
4 5 565 690 10 556 735 10 606 804 10 328 493 10

ry48p 2256 3 3 1007 1193 10 976 1102 10 1267 1657 10 452 995 10
5 4 3237 4462 10 3269 4579 10 3666 4810 10 1280 1833 10
4 5 6481 8576 10 6648 9353 10 7386 10,321 10 2758 5471 10

ft53 2756 3 3 53 79 10 54 92 10 66 116 10 19 27 10
5 4 194 338 10 206 371 10 202 364 10 104 215 10
4 5 405 940 10 420 1010 10 484 833 10 199 499 10

ftv64 4160 3 3 230 356 10 210 329 10 270 408 10 95 184 10
5 4 737 1278 10 706 1088 10 838 1435 10 370 647 10
4 5 859 1630 10 921 1828 10 984 1674 10 429 659 10

Overall average 961 973 1097 427
Table 2
Comparing the performance of the proposed restrictions within the two-phase approach.

Instance z∗ Two-phase 2-opt Two-phase LKH
z̄ % Gap Time (s) Cuts z̄ % Gap Time (s) Cuts

I II I II I II I II

bayg29 1702 1722 1.20 17 84 9 21 1702 0 80 2 23 0
hk48 12,057 12,140 0.68 60 137 5 25 12,057 0 136 4 26 0
brazil58 26,349 26,477 0.49 49 110 6 22 26,349 0 112 6 29 0
eli76 560 563 0.70 44 401 1 36 560 0 365 13 39 0
gr96 56,951 57,183 0.41 749 2643 4 26 56,951 0 2157 92 28 0
Overall average 0.69 184 675 5 26 0 570 24 29 0

Asymmetric instances

br17 40 41 1.75 2 8 1 15 40 0 5 2 16 0
p43 5625 5630 0.08 107 499 1 19 5626 0.01 72 257 19 2
ry48p 14,884 14,991 0.72 1188 6198 1 23 14,885 0.01 610 2148 21 2
ft53 7185 7243 0.81 78 407 3 28 7185 0 167 32 27 0
ftv64 1921 1929 0.41 140 843 2 34 1922 0.05 47 381 37 1
Overall average 0.75 303 1591 2 24 0.01 180 564 24 1
phase two (II), the average total CPU time (Total), and the number
of covering constraints added at the end of phases one and two
(Cuts).

Table 2 shows that for symmetric instances, two-phase 2-opt
quickly obtains near-optimal heuristic solutions with an objective
function gap less than 1% on average. However, the total time to
find an optimal solution by two-phase 2-opt is larger than the
time required by two-phase LKH, which finds an optimal solution
for every instance at the end of phase one. The 2-opt restriction
identifies only a small number of covering constraints compared
to the LKH restriction.

We conclude that for symmetric instances the 2-opt restriction
is the best choice for a stand-alone heuristic, and the LKH
restriction is better when embedded in our two-phase exact
algorithm. For the asymmetric instances, the LKH restriction
outperforms the 2-opt restriction both as a stand-alone heuristic
and within our exact algorithm, finding heuristic solutions with a
smaller average gap in less computational time. Both algorithms
require considerably more time for phase two on the asymmetric
instances.

3.3. Sensitivity analysis

We conduct additional sensitivity analysis experiments related
to the defender’s budget, Q , the attacker’s budget, B, and the range
of the arc delay coefficient. For this purpose, we select a subset of
10 symmetric instances based onnetwork eli76 and10 asymmetric
instances based on network ftv64, and begin by solving each

L. Lozano et al. / Operations Research Letters 45 (2017) 210–216 215
Table 3
Measuring the effect of Q and B on execution time and objective.

Q B eli76 (symmetric) ftv64 (asymmetric)
Avg Max # solved z∗ Avg Max # solved z∗

0 4 20 57 10 560 21 43 10 1933
2 4 63 134 10 558 95 238 10 1915
4 4 133 382 10 556 242 467 10 1907
6 4 276 699 10 554 454 723 10 1899
8 4 352 486 10 553 676 1087 10 1892

10 4 679 1127 10 552 1004 1501 10 1887

4 2 14 18 10 547 67 130 10 1875
4 4 132 381 10 556 241 464 10 1907
4 6 2193 5874 10 563 594 832 10 1935
4 8 5823 >14,400 6 570a 1641 3354 10 1959

a Average optimal objective value computed only among the instances solved within the time limit.
Table 4
Measuring the effect of varying the delay coefficient range on execution time.

Delay configuration bayg29 (symmetric) p43 (asymmetric)
Avg Max # solved z∗ Avg Max # solved z∗

[1, cij] 25 46 10 1686 185 363 10 5624
[1, 2cij] 119 173 10 1712 214 357 10 5624
[1, 3cij] 344 875 10 1722 225 337 10 5626
[1,M] >14,400 >14,400 0 – 749 1505 10 5633
Table 5
Imposing a penalty on the number of times an arc is used in the sample.

Delay configuration bayg29 (symmetric) p43 (asymmetric)
Avg Max # solved z∗ Avg Max # solved z∗

[1, cij] 39 65 10 1686 346 607 10 5624
[1, 2cij] 122 184 10 1712 455 645 10 5624
[1, 3cij] 250 520 10 1722 462 553 10 5626
[1,M] 5180 6826 10 1759 1562 1886 10 5633
instance with intermediate values of Q = 4 and B = 4. We
then vary B and Q to determine the impact that these parameters
have on computational time and objective function value. For this
experimentweuse the two-phase LKHalgorithm since it is the best
performer among the proposed algorithms. Table 3 presents the
results of this experiment.

Table 3 shows that increasing the attacker’s budget has a
dramatic effect on the execution time of the algorithm. For the
symmetric instances, the computational times increase from 14 s
to over 2000 s as B grows from 2 to 6, and only six out of ten
instances are solved to optimality when B = 8. For the asymmetric
instances the computational time increases by roughly a factor
of three when increasing B by two units. On the other hand,
increasing the defender’s budget has a less pronounced effect on
the computational time. Increasing the defender’s budget by ten
units decreases z∗ by about 1.5% for the symmetric instances and
2.4% for the asymmetric instances. Increasing the attacker’s budget
by six units results in an objective value increase of roughly 4% for
both the symmetric and the asymmetric instances.

We also conduct experiments to measure the effect of
increasing the arc delay coefficient range on the execution times.
For this purpose, we generate new instances based on symmetric
network bayg29 and asymmetric network p43. We generate 20
instances (10 symmetric and 10 asymmetric) having random
arc delay coefficients uniformly distributed between [1, 2cij],
20 instances having delay coefficients between [1, 3cij], and 20
instances having delay coefficients between [1,M], where M =
10max(i,j)∈A{cij}. The latter delay configuration models the case in
which an arc may become unavailable when interdicted. Table 4
presents results over this new set of instances. As before, we use
intermediate values of Q = 4 and B = 4.

Table 4 shows that for the symmetric instances, the computa-
tional time increases by roughly a factor of 15 as the delay range
increases from [1, cij] to [1, 3cij], and none of the instances for
which the delay coefficients are between [1,M] terminate within
the four-hour time limit. On the contrary, for the asymmetric in-
stances the computational time exhibits a moderate increase with
respect to the delay coefficient range and the instances having
delay coefficients between [1,M] are solved on average in about
12 min. The increased difficulty of solving symmetric instances as
the range of the d-parameters grows may be due to the amount
of similar tours that exist in the sample, which we expect to be
considerably greater for symmetric instances than for asymmetric
instances.

To mitigate the extent to which similar tours are included in
the sample, we modify the objective function in phase one of our
algorithm to include a penalty function based on sample diversity.
Let uij be the number of tours in the sample that use arc (i, j). For
a given attack x̂, we set the third-stage objective function in phase
one as

min
y∈Y


(i,j)∈A

(cij + dijx̂ij)yij + Puijyij, (11)

where P is an arbitrary constant penalty. After fine-tuning the two-
phase LKH algorithm, we set P equal to 1/2.

Table 5 shows that including the penalty in the objective
function greatly reduces the computational time for solving the
symmetric instances having delay coefficients between [1,M],
which are now solved in less than 2 h. On the other hand, including
the penalty in the objective function has a negative effect on the
execution time for the asymmetric instances, which in the worst
case increases by roughly a factor of 2.

Acknowledgments

The authors are grateful for the remarks of an anonymous
referee and an Associate Editor, whose comments led to an

216 L. Lozano et al. / Operations Research Letters 45 (2017) 210–216
improved version of this paper. The authors also gratefully
acknowledge the support of the Air Force Office of Scientific Research
under grant FA9550-12-1-0353, and the Office of Naval Research
under grant N000141310036.

References

[1] R.K. Ahuja, Ö. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale
neighborhood search techniques, Discrete Appl. Math. 123 (1) (2002) 75–102.

[2] D. Applegate, R. Bixby, V. Chvátal, W. Cook, CONCORDE TSP solver, available at
www.math.uwaterloo.ca/tsp/concorde.html.

[3] D. Applegate, R. Bixby, W. Cook, V. Chvátal, On the solution of traveling sales-
man problems, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany,
1998.

[4] E. Balas, R. Jeroslow, Canonical cuts on the unit hypercube, SIAM J. Appl. Math.
23 (1) (1972) 61–69.

[5] G.G. Brown, W.M. Carlyle, J. Salmerón, R.K. Wood, Defending critical
infrastructure, Interfaces 36 (6) (2006) 530–544.

[6] P. Cappanera, M.P. Scaparra, Optimal allocation of protective resources in
shortest-path networks, Transp. Sci. 45 (1) (2011) 64–80.

[7] R.L. Church, M.P. Scaparra, The r-interdiction median problem with fortifica-
tion, Geogr. Anal. 39 (2) (2007) 129–146.

[8] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[9] M.M. Flood, The traveling-salesman problem, Oper. Res. 4 (1) (1956) 61–75.
[10] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling

salesman heuristic, European J. Oper. Res. 126 (1) (2000) 106–130.
[11] E. Israeli, R.K. Wood, Shortest-path network interdiction, Networks 40 (2)
(2002) 97–111.

[12] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, JohnWiley
& Sons, New York, 1985.

[13] S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling-
salesman problem, Oper. Res. 21 (2) (1973) 498–516.

[14] L. Lozano, J.C. Smith, A backward sampling framework for interdiction
problems with fortification, INFORMS J. Comput. 29 (1) (2016) 123–139.

[15] J.R. O’Hanley, R.L. Church, Designing robust coverage networks to hedge
against worst-case facility losses, European J. Oper. Res. 209 (1) (2011)
23–36.

[16] V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia, A review of dynamic vehicle
routing problems, European J. Oper. Res. 225 (1) (2013) 1–11.

[17] M. Prince, J.C. Smith, J. Geunes, A three-stage procurement optimization
problem under uncertainty, Nav. Res. Logist. 60 (1) (2013) 395–412.

[18] G. Reinelt, TSPLIB–A traveling salesman problem library, INFORMS J. Comput.
3 (4) (1991) 376–384.

[19] M.P. Scaparra, R.L. Church, A bilevel mixed-integer program for critical
infrastructure protection planning, Comput. Oper. Res. 35 (6) (2008)
1905–1923.

[20] M.P. Scaparra, R.L. Church, An exact solution approach for the interdiction
median problem with fortification, European J. Oper. Res. 189 (1) (2008)
76–92.

[21] J.C. Smith, C. Lim, F. Sudargho, Survivable network design under optimal and
heuristic interdiction scenarios, J. Global Optim. 38 (2) (2007) 181–199.

[22] S. Starita, M.P. Scaparra, Optimizing dynamic investment decisions for railway
systems protection, European J. Oper. Res. 248 (2) (2016) 543–557.

http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref1
http://www.math.uwaterloo.ca/tsp/concorde.html
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref4
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref5
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref6
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref7
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref8
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref9
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref10
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref11
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref12
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref13
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref14
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref15
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref16
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref17
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref18
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref19
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref20
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref21
http://refhub.elsevier.com/S0167-6377(17)30109-8/sbref22

	Solving the traveling salesman problem with interdiction and fortification
	Introduction
	The backward sampling framework for the TSPIF
	Solving the TSPIF
	Sampling TSP tours
	Alternative restrictions for the recourse problem
	Two-phase approach

	Computational results
	Solving the TSPIF
	Assessing the effectiveness of the proposed restrictions
	Sensitivity analysis

	Acknowledgments
	References

