Computers & Industrial Engineering 121 (2018) 177-188

Contents lists available at ScienceDirect %"....r... T
Computers & Industrial Engineering
[=][-
journal homepage: www.elsevier.com/locate/caie (===
On scheduling a photolithography area containing cluster tools)

Sreenath Chalil Madathil®*, Siddhartha Nambiar®, Scott J. Mason®, Mary E. Kurz”

2 The Research Foundation for State University of New York, Binghamton, NY, USA
® Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA

Check for
updates

€ Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27607, USA

ARTICLE INFO ABSTRACT

Keywords:
Photolithography
Scheduling
Cluster tools
Optimization
Heuristics

Genetic algorithm

Photolithography is typically the bottleneck process in semiconductor manufacturing. In this paper, we present a
model for optimizing the scheduling of the photolithography process in the presence of both individual and
cluster tools. The combination of these individual and cluster tools that process various layers (stages) of the
semiconductor manufacturing process flow is a special type of flexible flowshop. We seek separately to minimize
total weighted completion time and maximize on-time delivery performance. Experimental results suggest that
our solution algorithms show promise for real world implementation as they can help to improve resource

utilization, reduce job completion times, and decrease unnecessary delays in a wafer fab.

1. Introduction

Scheduling and sequencing are indispensable processes in industry.
A well-designed scheduling system helps the industry focus on in-
creasing throughput by reducing the run time of machines, thereby
saving money. Processing jobs on a “first-come, first-serve” basis may
not be an optimal policy on the factory floor (Conway, Maxwell, &
Miller, 2012). The semiconductor wafer fabrication industry is one of
the largest industrial manufacturing segments. Implementing a proper
scheduling system in wafer fabrication can help increase profit margins
as well as reduce the time required to produce the wafers that contain
integrated circuits.

In semiconductor manufacturing, photolithography is normally one
of the bottleneck processes that require high capital investments (Sha,
Hsu, Che, & Chen, 2006). Hence, optimizing the photolithography
process by efficiently scheduling the jobs could be beneficial for the
industry. Machines that perform various steps in photolithography can
be organized as a flexible flowshop system. A flexible flowshop is de-
fined as a system in which the jobs need to be processed at different
sequential stages and at least one of the stages has more than one
machine operating in parallel. With the advancement of technology and
because of their efficiency and profitability, cluster tools were added to
the wafer fabrication processes in recent years. A cluster tool combines
various types of machines that perform individual processes and orga-
nizes them around a robotic wafer transport device (Yim & Lee, 1999).
These tools consist of those machines that are capable of processing two
or more stages and combine several processing modules into a single
machine (Lee, 2008).

* Corresponding author.

In this research, we develop a scheduling model for the photo-
lithographic process, which is a special type of flexible flowshop (FFS)
that has cluster tools along with the traditional individual photo-
lithography tools. According to Chiang (2013), photolithography
scheduling is more complex than tradition flexible flowshop sche-
duling. The author reviews several reasons for this scheduling com-
plexity such as re-entrant job flow, a jobs’ readiness, due dates, mul-
tiple machine types, multiple orders per job, and lot priorities. Each of
the jobs that enter the system typically re-visits equipment visited at
earlier manufacturing (i.e., reentrant flow). If the proposed model is
tested successfully, it could be implemented in the semiconductor
industry that employs photolithography machines with advanced
cluster tools. Wafer fabs will be able to schedule their machines to
improve utilization of the machines, reduce the processing time for
jobs, and efficiently schedule without introducing unnecessary delays
in the process.

In short, the key contributions of this paper are:

® To the best of our knowledge, this is the first model that schedule a
photolithographic process that consists of both cluster tools and
standalone tools with reentrant job flow across multiple product
types, job ready times and the continuous flow of jobs inside cluster
tools.

® To develop a mixed integer programming model (MIP) to solve this
special FFS.

e To implement two heuristic algorithms and compare their perfor-
mances with respect to the MIP model.

E-mail addresses: schalil@g.clemson.edu (S. Chalil Madathil), snambia@ncsu.edu (S. Nambiar), mason@clemson.edu (S.J. Mason), mkurz@clemson.edu (M.E. Kurz).

https://doi.org/10.1016/j.cie.2018.05.036

Received 8 September 2017; Received in revised form 13 April 2018; Accepted 22 May 2018

Available online 25 May 2018
0360-8352/ Published by Elsevier Ltd.

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.05.036
https://doi.org/10.1016/j.cie.2018.05.036
mailto:schalil@g.clemson.edu
mailto:snambia@ncsu.edu
mailto:mason@clemson.edu
mailto:mkurz@clemson.edu
https://doi.org/10.1016/j.cie.2018.05.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.05.036&domain=pdf

S. Chalil Madathil et al.

2. Literature review

Most manufacturing industries face various challenges such as
processing high priority jobs, unforeseen breakdowns, scheduled
maintenance, delayed processing of jobs, and meeting deadlines set by
customers. Proper production planning and process scheduling help to
maintain or improve the efficiency of systems and control of operations
(Pinedo, 1995). The significance of proper production scheduling
comes to light in this scenario when manufacturers need to satisfy
customer demands with the help of a minimal number of photo-
lithography tools missing no committed completion time. This com-
mitted completion time is the due date (Pinedo, 1995). Montazeri et al.
explained and reviewed different scheduling rules, such as static and
dynamic rules (Montazeri & Van Wassenhove, 1990). Static and dy-
namic rules depend on the time when the rule is applied. Static rules,
applied at the start of the scheduling period, have a fixed schedule and
dynamic rules change as the time progress. The authors also reviews
various scheduling rules, compares their performance measures for
different environments and conclude that performance evaluation de-
pends on the objective under consideration (Montazeri & Van
Wassenhove, 1990).

The four basic processes involved in manufacture of integrated
circuits are wafer fabrication, wafer probe, assembly and packaging,
and final testing (Uzsoy, Lee, & Martin-Vega, 1992). A wafer fabrication
process includes complex procedures and technologies that involve
high capital investments. The proper utilization of wafer fabs can lead
to increased profit for a semiconductor wafer fabricator. Each time a
wafer passes through photolithography, a new layer of required cir-
cuitry is formed on the wafer. For most wafers there will be at least 25
such layers. Since the photolithography process is repeated during
wafer fabrication, overall performance of the systems is improved by
improving the photolithography process (Arisha & Young, 2004). The
high capital cost of the photolithography tools forces the wafer manu-
facturers to streamline the processes to utilize these machines to the
fullest possible extent.

There are many literatures and textbooks that explains the machine
environments like a single machine, parallel machines, flowshops, job
shops, flexible flowshops, and flexible job shops found in industries
(Pinedo, 1995). Many mixed-integer programming (MIP) models for
scheduling FFS are explained in Sawik (2011). The book considers
various scenarios of flowshop modeling with multiple machines in each
stage and finite or infinite buffers between each stage. According to
Floudas and Lin (2005), many scheduling problems use Mixed Integer
Linear Programming (MILP) to find solutions due to their rigorousness,
resilience, and flexible design capabilities. Indeed, the use of MIP
models is rather popular in this regard.

Ruiz discusses the various solution approaches for the FFS problems,
which includes exact methods, heuristics, and meta-heuristics (Ruiz &
Vazquez-Rodriguez, 2010). In exact methods approaches such as
branch and bound, algorithms solve problems to optimality. The pro-
blem with branch-and-bound algorithms is that they utilize a large
amount of computer processing resources and are able to solve only
problems with a few jobs and stages. Often, they are also deemed to be
too complex for real world problems. Lowe and Mason (2016) proposed
a deterministic MIP model to schedule weekly production quantities for
semiconductor manufacturing in order to meet forecasted demand over
a six-month planning horizon. MIP models are proposed in Sawik
(2012) for deterministic batch or cyclic scheduling in flow shops with
parallel machines and finite in-process buffers. Further, Sawik (2014)
presented a new MIP formulation for cyclic scheduling in flow lines
with parallel machines and finite in-process buffers, where a Minimal
Part Set (MPS) in the same proportion as the overall production target is
repetitively scheduled.

A simple, two-stage flexible flowshop is strongly NP-hard
(Hoogeveen, Lenstra, & Veltman, 1996). According to Kyparisis and
Koulamas (2001), minimizing total weighted completion time for a

Computers & Industrial Engineering 121 (2018) 177-188

multiple stage flexible flowshop scheduling problem is NP hard. Hence
by extension, the complexity of scheduling a larger flexible flowshop
with multiple machines in almost every stage of its processing is also
strongly NP hard. When compared to traditional flowshops, a photo-
lithography system involving cluster tools, constraints for multiple
wafer routes, reentrant flow, and no buffers inside the cluster tool are
therefore also strongly NP hard (Yim & Lee, 1999). Since the practical-
sized complex FFS problems NP-hard, we require smart heuristics to
arrive at good solutions (Jungwattanakit, Reodecha, Chaovalitwongse,
& Werner, 2007).

Solving FFS problems by heuristic methods like dispatching rules
and variants of shifting the bottleneck procedure (SBP) (Cheng, Karuno,
& Kise, 2001) are explained by Lee (2008). Sarin, Varadarajan, and
Wang (2011) provides an overview of advanced dispatching rules and
compares the effectiveness of the performance from various simulation
studies in a wafer fab. These dispatching rules include scheduling of
general wafer fab, specific operations at bay level like photo-
lithography, batch processing, etc. The primary characteristics that
make wafer fab scheduling such a different problem includes batching,
reentrant flow, sequence dependent setups, and parallel machines
(Monch, Fowler, Dauzeére-Pérés, Mason, & Rose, 2011).

Dispatching rules include certain rules of thumb for the priority
assignment of jobs onto machines. Some examples of dispatching rules
include Shortest Processing Time (SPT), Longest Processing Time (LPT),
and Shortest Remaining Processing Time (SRPT). The SBP uses a divide-
and-conquer strategy and has been proven very effective when used in
combination with exact methods for solving problems. The scheduling
of a flexible flowshop with cluster tools is performed via simulated
annealing (Yim & Lee, 1999) to obtain a near-optimal solution. How-
ever, the study does not consider the re-entry of jobs to previous stages.
Pan et al. provide a recent comprehensive literature review of the
scheduling of cluster tools in semiconductor manufacturing (Pan, Zhou,
Qiao, & Wu, 2018).

Genetic Algorithms (GA) are a popular tool used in a number of
papers focused on applications in real-world problems (Oduguwa,
Tiwari, & Roy, 2005). GAs have been adapted to solve problems in-
volving sequence-dependent setup times, several production stages
with unrelated parallel machines at each stage, and machine eligibility
(Ruiz & Maroto, 2006). The choice of how the GA solution is re-
presented is an important facet in the design of a GA, as representation
affects other design choices, such as crossover and mutation functions.
A commonly employed representation scheme is the topological or-
dering of the tasks. Ramachandra and Elmaghraby (2006) minimize the
weighted sum of completion times in a flexible flowshop by re-
presenting the chromosomes as topological orderings of jobs, the
schedules of which are obtained using a first-available machine rule for
machine assignments.

Table 1 summarizes the relevant literatures. Even though most of
the papers reviewed have mentioned either the scheduling of flow-
shops, the scheduling of flexible flowshops, and/or scheduling of cluster
tools separately, there exist no efficient models that analyze a flexible
flowshop that contains cluster tools and reentrant job flow across
multiple product types. We will also consider job ready times and the
continuous flow of jobs inside cluster tools. In this research, we develop
a scheduling model for the photolithographic process, that has cluster
tools along with traditional photolithography tools, and considers re-
entrant job flow across multiple product types. Additionally, we use two
heuristic algorithms to provide numerical results.

3. Problem description

The photolithography FFS system is arranged in such a way that the
individual machines at each stage are organized as a general FFS with a
few sets of cluster tools included. As jobs routed through the various
stages of the photolithography process could return to one or more of
these stages during their processing path, photolithography is a reentrant

S. Chalil Madathil et al.

Computers & Industrial Engineering 121 (2018) 177-188

Table 1
Summary of relevant literature.
Reference Objective Methodology Features Complexity
Yim and Lee (1999) Comax Heuristic Re-entry jobs NP hard
Simulated Annealing No stand-alone tools
Candidate list No ready times
Kyparisis and Koulamas (2001) > WG Approximation Parallel machines NP hard
WSPT heuristic No ready time
Worst-case analysis No cluster tools
Kock et al. (2007) Chax Discrete event simulation No ready time N/A
Throughput Aggregate modeling approach no re-entry
Zhou et al. (2014) Chnax Heuristic Re-entrant flow NP hard
Cluster tools
Park et al. (2017) Crax Fab-level simulation Lot cycle-time N/A
Lot residency time
Lot throughput time
Zhang et al. (2018) Cinax Heuristic Ready times NP hard
Imperialist competitive algorithm Re-entry jobs
Rolling horizon No cluster tools
| |
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 :

LY.
A

A

A\ 4

\ 4

A

A

ofllolco==
®

Fig. 1. Schematic diagram for the photolithography process.

flexible flowshop (Graves, Meal, Stefek, & Zeghmi, 1983). The multistep
“photo” process is now described in detail and is shown in Fig. 1. The
baking process in stage 4 and stage 6 can use the same bake ovens (tools)
and hence represent a reentrant stage (i.e., reentrant flow).

3.1. Photolithography stages

In the first step of the photolithography process, a semiconductor
wafer may be cleansed in a sink (tool “S” in Fig. 1) (McGuigan, 1992).
The wafer is coated (tool “C” in Fig. 1) with photosensitive resist and is
exposed (“E” in Fig. 1) to light. Wafers are exposed to light with the
help of a pattern mask that controls the wafer areas that receive light
exposure. This helps to define the required circuit functionality. The
exposed wafer is then developed (“D” in Fig. 1) so that the required

patterns are imprinted onto the wafer by removing the exposed pho-
toresist. The final photolithography stage is baking (“B” in Fig. 1).
Sometimes, wafers are baked before and/or after the developing stage.

The flow diagram of the photolithography process for a single layer
of wafer fabrication is illustrated in Fig. 1. Normally, a wafer repeats
this process 20-30 times during its process flow. Fig. 1 also depicts
cluster tools that are used in the photolithography process. Cluster tool
“CEDB” processes the Coat, Expose, Develop, and Bake steps in order.
Similarly cluster tools “CED,” “CE”, and “ED” process Coat-Expose-
Develop (CED), Coat-Expose (CE), and Expose-Develop (ED), respec-
tively. A job can have multiple routes based on the process flow. For
example, a job that requires a coat, expose, develop and bake processes
can flow through any of the 4 paths using the combinations of tools like
C—-E—-D—B, CE—D—B, CED — B or CEDB.

S. Chalil Madathil et al.

The transportation of wafer lots inside a wafer fab (interbay and
intrabay) is via automated material handling systems (AMHSs). AMHSs
transport lots both to stockers and to downstream production tools, as
dictated by the shop floor control system (MES), as soon as the current
tool the lot is on completes its processing. The availability of the
downstream tool determines the destination of completed lots, whether
to the stocker or to the downstream processing tool. This wafer trans-
portation inside a wafer fab takes place asynchronously with wafer
transported to the next tool as soon as current tool completes its process
and the tool for the next process is free (Kock, Veeger, Etman, Lemmen,
& Rooda, 2007). Another transport technique is synchronous in which
transportation of the all wafers to the next process happen when the
slowest wafer has finished processing. The WIP stockers in wafer fabs
are sized to hold all required work-in-process within the fab (Cardarelli
& Pelagagge, 1995). In this way, lots waiting to be processed do not
wait in a physical queue located on/near the production equipment, but
rather in a virtual queue as house in the WIP stocker. Stockers are ty-
pically located throughout the wafer fab, often at the end of each
processing bay along the main center aisle.

3.2. Methodology

We propose a MILP model to schedule this photolithography stages
and attribute our model’s combinatorial nature to various discrete de-
cisions such as job’s assignment to machines and sequencing of jobs in a
machine. We develop two heuristic algorithms, compare the solution
quality and solving time for the three methods, and evaluate the
heuristic’s performance for larger problems.

The set of jobs entering the system for processing can be char-
acterized by their ready times (r;), the time at which the job is released
to the shop by some external job scheduler (Conway et al., 2012). An
initial step in optimizing industrial processes often includes improving
the total execution time of machines, also known as makespan (Cpyqy). A
schedule that minimizes makespan can be obtained by applying MIP
techniques (Floudas & Lin, 2005).

In this research, we develop a MIP formulation to optimize the
makespan of the photolithography process containing reentrant jobs
with ready times. In terms of the standard «l8ly scheduling notation
introduced in Graham, Lawler, Lenstra, and Kan (1979), the problem
under consideration is defined as FFmlrj, rcrclCpe (Pinedo, 1995).
Other objectives that could be optimized in a scheduling system include
total weighted completion time (WCT) and total weighted tardiness
(TWT). The total weighted completion time is represented as Y, wy Cy
with wy denoting the weight or priority of job k and C; representing the
completion time of job k. In practice, WCT is a surrogate measure of the
inventory or holding cost incurred by the schedule (Pinedo, 1995). The
total weighted tardiness, Y, wy T, where T; is the tardiness of the job k, is
generally an objective that relates to on-time delivery.

4. Mathematical formulation

This section explains the model formulation along with the notations
used in the model, followed by an explanation of the constraint sets. The
MIP formulation for scheduling flowshops with parallel machines and
infinite in-process buffers (Sawik, 2011) is used as the base model for this
FFS and additional constraints are added to expand this formulation to
incorporate the scheduling of cluster tools and reentrant flow.

4.1. Model parameters and variables

4.1.1. Notation

Sets

I set of processing stages indexed by i € I = {1, ..., m}

J; set of processors in each stage i indexed by j € J = {1, ..., m;}
K set of jobs that needs to be processed indexed by

ke K={1, .., n}

180

Computers & Industrial Engineering 121 (2018) 177-188

CEDB set of cluster machines for C-E—D—B indexed by i,

CED set of cluster machines for C—E—D indexed by i,
CE set of cluster machines for C—F indexed by i,
ED set of cluster machines for E—D indexed by i,
Parameters

m number of processing stages

m; number of machines at each processing stage i

n number of jobs

Py processing time for job k in stage i

Iy ready time for job k

d; due date for job k

Wy priority for job k

M sum of the processing time of all jobs in the system

Decision variables

Cy ~ completion time of job k at stage i

Cnax makespan or time at which all jobs complete their operations
on all stages

Xy 1, if job k is assigned to machine j in stage i
0, otherwise

Yu 1, if job k precedes job I in the processing sequence

0, otherwise

4.2. Model formulation

minCpa, (€]
Chu2Pyr+n VkeK 2)
Cix—Cii—1yr = B, Vkek, iel, i>1 3)
Ck + M2 + yy—xje—x) 2 Cy+ Py Viel, jel, keKk,

leK, 1>k @
Ci + MB=yy—xj—xj) 2 Coe + Py Viel, jeJ, keK,

leK, 1>k (5)
Couk < Cnax Vk€eK (6)
Yo Yk=1 ViIE€I k&K, P >0 o
Zjehxijk=0 Viel, k€K, P=0 ®

D Xk = 3oy Vi € CEDB, k€K, iy # 0, 3<i<m, i #4

©
X4k S 1=Xyr Vi € CEDBUCED, iy # 0, j€,, k€K (10)
Coe + M2 + yy—%ik—%i1) = Cou + P Vi € CEDB, § # 0,
kek, lek, I>k amn
Co + M (3=y—%ik—%i1) = Cmk + Py Vi € CEDB, i # 0,
kekK, leK, I>k (12)

Dy Xiok = 2ok VL ECED, k€K, i # 0, 3<i<m=1, i # 4

(13)
Cok + M2 + Yu=—%ik—%iy1) 2 Com—1i + Pk Vi € CED, i, # 0,
kekK, leK, I>k (14)
Cor + M (B=yy—%ik—%i1) 2 Con—1yk + Py Vi, € CED, i, # 0,
kekK, leK, I>k (15)

S. Chalil Madathil et al.

Ziel X3isk = Xizk V i; € CE, k€K, iz # 0 (16)

Cok + M2 + yy=%unk—%u) = Csi+ P Vi3 €CE, i3 # 0, k€K,

leEK, I>k a7
Cou+ MB=y—%ik—%i) 2 Cik+ Py Vi3 €CE, i3 # 0, k€K,

lekK, 1>k 18)
Doie; Xsisk =Xk Vig€ED, k€K, iy # 0 19)

Csk + M (2 + yy—%3i,—%3i41) = Cs + Py
lekK, I>k

Viy€eED, iy # 0, k€K,
(20)

Cst + M (B=yy—3iyc—zi41) = Csi + Py
lekK, I>k

Vi, €ED, iy # 0, k€K,
21

Car + M2 + yy—xXan—xei) = Col + By
lekK, I>k

Vielhnlk i #0, kek,
(22)

Cot + M 3=y —Xaix—xeir) = Car + By
leK, I>k

VvielLnlk i # 0, keKk,
(23)
Cok + M (2 + y—Xsik—Xai1) > Ca + Py
lekK, I>k

VielLnl i # 0, keKk,
(24)

Cy+ M=y —xg—x4i) 2 Cox + Py Vielnlk, i # 0, k€K,

leK, I>k (25)
Chax = 0 (26)
Ck=20 Viel, kek 27)
xx €1{0,1} Viel, jeJ, kekK (28)
Ya€10,1} VkeK, lekK (29)

The model’s objective function (1) minimizes makespan. The ob-
jective could be changed to minimizing the weighted completion time
(WCT) if desired. Constraint sets (2) and (3) ensure that a job starts
processing at stage 1 and processes successively on all downstream
machines. The overlapping of more than one job on a single machine at
a time is prevented by constraint sets (4) and (5). These constraints act
as “either-or” constraints, which imply that one of the constraints will
be active for a particular value of y,;. When job k precedes job 1, then
constraint set (4) will be active and constraint set (5) will be inactive,
because of the value of “M” and vice versa. The value of M is assigned as
the sum of processing time of all jobs in the system. The maximum
completion time, Cpqy, should be greater than or equal to the comple-
tion time of the last job in the final stage of the processing. This is
achieved by including the constraint sets (6). Constraint sets (7) and (8)
ensure that if the processing time for a job in any stage is a non-zero,
positive number, then one of the machines in that stage must process
the job (Fourer, Gay, & Kernighan, 1990). If the processing time for a
job at any stage is zero, then that stage is skipped for that particular job.

The remaining sets of constraints are developed for cluster tools and
reentrant flow processes. Constraint sets (9)—(12) model the cluster
process of coat, expose, develop, and bake in a single machine. Con-
straints set (10) ensures that a job that needs to be processed on stage 4
bake process will not enter the cluster tools CEDB or CED. Constraint
sets (9), (13), (16) and (19), ensure that a job that enters a cluster
machine will stay inside that machine until it completes all the pro-
cesses performed by the cluster tool. Pairs of constraint sets (11), (12),
(14), (15), (17), (18), and (20), (21) stop jobs from entering the cluster
tool if the machine is already processing some other job. Constraint set
(10) updates the assignment variable for job k, for the first bake stage to
0, if job k does not require the baking. Constraint sets (22)-(25) model

Computers & Industrial Engineering 121 (2018) 177-188

the re-entry of jobs in the bake process of photolithography. The pho-
tolithography process under consideration has re-entry at stages 4 and
6. Hence, the machines of the fourth and sixth stages J, and Js are re-
ferenced in these equations. These constraints guarantee that if any of
the jobs is being processed in the bake oven at any of its two stages, i.e.,
the first bake process or the reentrant second baking stage, then no
other job will enter the machine. Finally, constraint sets (26)-(29) are
non-negativity constraints, which imply that these variables should
have a value greater than or equal to zero.

For calculating the minimum TWT, the objective that will be used is
as below.

minimize z wy Tg,
kek

(30)

Constraint set (6) will be replaced by a new constraint to incorporate
the tardiness value. Constraint set (31) is used when the objective
function is TWT.

Cuk—dr < Ty, VkeK (31)

5. Experimental study
5.1. Experimental plan

Our experimental plan evaluates three objective functions with the
proposed MIP for photolithography scheduling: minimizing makespan
(Cpax), minimizing total weighted completion time (WCT), and mini-
mizing total weighted tardiness (TWT). The experimental design used
in the random problem generation (Mehta & Uzsoy, 1998) is given in
Table 2. These parameter values were vetted with the industrial partner
to be an appropriate set of factors for experimentation. Three different
levels of the number of jobs to be scheduled are investigated in this
problem: 5, 10, and 25. Each set of jobs tested with two levels of ready
times. For the first condition, all jobs have zero ready time and for the
second condition, some portion of the jobs have a ready time that is a
non-zero, randomly generated value while the remaining jobs of the
same sets have zero ready time.

The due date value is generated using a discrete uniform distribu-
tion (Table 2). The calculation of the estimated makespan includes the
total number of jobs, the processing time of the photolithography
process’s bottleneck stage, the total number of machines that process
the bottleneck stage, and the sum of the processing times for all non-
bottleneck stages in photolithography. The parameter T is the expected
percentage of tardy jobs and two cases for the value of T are considered
in this experimentation: 0.3 and 0.6. Further, R is a range parameter
that is studied at two levels: 0.5 and 2.5 (Mehta & Uzsoy, 1998).

The weights (wy) are calculated based on a random distribution of
all integers between 1 and 5, 1 being a low priority job and 5 being a
high priority job. Considering the three levels for the number of jobs,
two scenarios for job ready times, and four combinations of due date
parameters T and R, 24 unique combinations of data are run for two
different resource (equipment) levels (Table 3). The equipment settings
in scenario 1 are based on representative data obtained from an actual
wafer fab that partnered with the authors to conduct this study. In order
to examine potential performance differences, scenario 2 was created
by reducing equipment counts from scenario 1. As three different ob-
jective functions are investigated, a total of 24(2)(3) = 144 unique
scenarios exist for investigation. Based on 10 replications for each un-
ique scenario, a total of 1440 files are generated for analysis and
comparison. Microsoft Excel 2010 is used to generate random numbers
for the various cases in the experimental plan.

5.2. Model execution

The random data that was created is used to test the mathematical
model. After implementing the model in AMPL (Fourer, Gay, &

S. Chalil Madathil et al.

Kernighan, 1993), 1338 test files were run and the objective functions
are validated for proper machine assignments. The solution was pro-
duced using Gurobi 5.1.0 solver (Gurobi Optimization, 2016) within a
7200 CPU seconds time limit on a Windows 7 platform with Intel®
Core™ 2 Quad CPU Q6600 @2.40 GHz with 16 GB of RAM. Although
Gurobi 5.1.0 did not converge to the optimal solution within the al-
lowed 7200 s for most of the instances, Gurobi 5.1.0 was able to obtain
a good solution quickly. We explain the model size using the number of
constraints and variables for each of the problems. Table 4 provides the
number of constraints and variables introduced into the model based on
the number of jobs.

Since the scheduling problem under study is strongly NP-Hard,
heuristic and/or metaheuristic approaches may provide good, near
optimal solutions that are better than the solution obtained by a time-
limited MIP (Urlings, 2010). The heuristic approach for the problem
under study is presented, and then its performance is compared with
that of the proposed MIP model under a time limit restriction.

Computers & Industrial Engineering 121 (2018) 177-188

6. Heuristic algorithm

A review of the available literature confirmed that no heuristic is
currently available for analyzing the flexible flowshop scheduling pro-
blem with cluster tools and job ready times. Therefore, in order to very
quickly obtain good solutions to the research problem under study, we
created our own GA-based heuristic (Holland, 1992) and a constructive
heuristic.

6.1. Constructive heuristics

To this end, we generated a constructive heuristic (pseudocode 1)
that takes in a topological ordering (permutation) of jobs as input and
returns either Cp,y, TWT, or WCT using the pseudocode 2. The pseu-
docodes 1 and 2 illustrates this constructive heuristic.

Algorithm 1. Procedure SchedulePhoto (SP)

Initialization;

Let [O] denote the o ordered job in a list and n = |O], the cardinality of the set O;

Let Sitrent denote the current schedule and S, denote the best schedule found so far;

Let G(Sitrent) denote the corresponding values of the objective function;

Let Pj jen: denote the processing time of job jent at stage I and mawxitrent is the maximum number of

iterations required;

Procedure SchedulePhoto (SP);

Sort jobs in ascending order of ready times (7). Break any ties by sorting those jobs in ascending order of Z—kk

Finally, break any remaining ties by sorting the jobs in the descending order of total count of cluster tools that

the job could be processed on.;

Define X = {k € K|r;, = 0};

Define Y = {k € K|0 < r < average ready time};
Define Z = {k € K|ry > average ready time};

for itrent = 1...maxitrent do

if itrent = 1 then

Sb = Sitrcnt;
end
else

if itrent < mazxitrent/2 then

end

else

order of the random number;

end

end

If G(Sit'rcnt) < G(Sb)7 then S, = Sitrcnt?

end

Result: Write the output results

Update the order in [O] based on swapping of elements;

Update the order in [O] based on order in X,Y and Z;

Call Procedure CreateSchedule (CS) using [O] and save the schedule in Sjtrent;

Use a hill-climbing approach in which we randomly select two elements and swap them;

Generate a random number U|0, 1] for each element in X,Y and Z and sort each set in the ascending

Call Procedure CreateSchedule (CS) using [O] and save the schedule in Sityent-

S. Chalil Madathil et al.

Algorithm 2. Procedure CreateSchedule (CS)

Computers & Industrial Engineering 121 (2018) 177-188

Procedure CreateSchedule (CS);
for jent = [1]...[n] do

for i =1...6 do

if Pj jens > 0 then

Ly

that machine]);

end

end

end

Result: Update S;j.cn¢ with the current schedule

Define set J;qpp = List of available machines at stage 7 that process job jent;
Select a machine m, with the largest number of cluster tools in it, from J;qup;
Update ¢ with the number of stages processed by machine m;

Update completion time Cj jent as (P jens + max [ready time, completion time of previous job on

6.2. Genetic algorithm

Genetic algorithms use ideas borrowed from the concepts of ge-
netics and biological evolution. The base version of the algorithm treats
solutions as genomes that are iteratively combined in pairs (binary
crossover) and mutated (binary mutation) to produce offsprings in
every generation. This process is repeated until a specific fitness func-
tion achieves a desired threshold criteria. In our Algorithm 3, the fitness
function computes the value of Cp,,y, TWT, or WCT, depending on what
is the desired objective function to be minimized. Further, we develop
approaches to perform crossover and mutation functions that enable us
to efficiently solve the flexible flowshop scheduling problem. As
Algorithm 3 outlines the pseudocode for GA, we also provide a de-
scription of crossover and mutation functions in the following

Table 2
Experimental design.

Experimental factor Settings

Number of jobs, n 5 15 20
Ready time ry = 0 for all k 30% of jobs, ry = 0
70% of jobs, rx = RANDOM[1,
2/3 X Cpax]
Job due date di dyx = Uniform [u(1-0.5R), u(1 + 0.5R)]
with

= Cmax X 1-T)
PBN
Cnax = 1.5 X | n X == + P
max (MiBN NBN)
Py = Processing time of the bottleneck stage
mipy = Number of machines that processes the bottleneck stage
Pnpn = Sum of the Processing time of all other non-bottleneck

stages

T = 0.3 and 0.6

R=0.5and 2.5

Processing time Stage 1 80% of jobs Pyj = 40

20% of jobs Py; = 0

Stage 2 100% of jobs P = 20

Stage 3 100% of jobs P3; = 75

Stage 4 20% of jobs Py = 45
80% of jobs Py = 0

Stage 5 100% of jobs Ps; = 30

Stage 6 50% of jobs Pg; = 45

50% of jobs Psj = 0

subsections. Our algorithm was implemented in MATLAB 8.1.0.604
(R2016a) and uses the same data as input that was generated for the
mathematical model. With regards to the threshold criteria, we set the
algorithm to terminate after MaxGenerations = 500 generations or if
the average relative change in the best fitness function value in 50
continuous generations is less than or equal to 107. Finally, we also set
the size of the population in each generation (popsize) to 100.

6.2.1. Crossover function

In genetic algorithms, crossover functions modify the makeup of
genomes from one generation to the next by taking more than one
parent genome and producing a child genome. In our GA presented in
Algorithm 3, we perform the crossover function in the following
manner.

Let us assume two parent genomes are coded as u and v which are a
vector of integers representing permutations of {1, 2, 3, ...,n}. Define !
as the i element of u and generate a random integer r from the set of
integers {1, 2, 3, ...,n}. Now, crossover is performed by swapping the

Table 3

Equipment settings.
Machine Type Scenario 1 Scenario 2
Sink 4 2
Coat 2 1
Expose 4 2
Develop 2 1
Bake 3 2
CE 2 1
CED 2 1
CEDB 2 1
ED 1 1

Table 4

Model size.
Problem size Constraints Continuous Binary Total

variables variables variables

5 1185 36 215 251
15 11205 106 795 901
25 31425 176 1575 1751

183

S. Chalil Madathil et al.

positions of elements u" and v" in both u and v. For instance, let
u=1{2,1,4,3,5 and v={5,2,3,4,1}. Let random integer r = 2.
Therefore, we swap the positions of the second elements of u and v
respectively, i.e., elements 1 and 2 in both u=1{2,1, 4, 3,5} and
v = {5, 2, 3, 4, 1}. The newly formed children are now {1, 2, 4, 3, 5} and
{5, 1, 3, 4, 2}. One of these children is selected at random and added to
the newly formed pool of children to be mutated in the next step.

6.2.2. Mutation function

During mutation in GA, one or more gene values are altered slightly
so as to ensure that genetic variation is preserved. In Algorithm 3, each
of the children formed after the crossover step is modified slightly by
taking two random elements of the permutation and switching their
positions. For instance, if one of the children formed from the crossover
step is {4, 2, 1, 3, 5}, two elements are picked at random (say, 3 and 4)
and their positions are swapped, to produce a new offspring with a
slightly altered genetic makeup: {3, 2, 1, 4, 5}.

6.2.3. Fitness function

The proposed heuristic solution outlined in Algorithm 3 involves
computing a fitness function. Procedure CS in Algorithm 3 (pseudocode
2) computes the fitness function depending on the objective function
such as Cpq (Pugazhenthi & Anthony Xavior, 2014), TWT (Liu,
Abdelrahman, & Ramaswamy, 2003), or WCT (Wu, Hsu, Chen, & Wang,
2011), that we wish to minimize.

Algorithm 3. Genetic Algorithm-based Heuristic

Computers & Industrial Engineering 121 (2018) 177-188

7. Results

7.1. Solution time performance

We compare the algorithms’ efficiency using the solving time. In
order to perform a fair comparison, we classify the results in terms of
the MIP’s optimality status. If the MIP obtained an optimal solution, we
compare the corresponding instances solution time for Algorithms 1
and 3 and is presented in Fig. 2. For instances with small jobs, our MIP
model was working better in terms of solution time. For larger instances
genetic algorithm (3) is better. As the size of the instances increase, the
solution time also increased. The number of instances that MIP solved
to optimality with 25 jobs are low when compared to the 5 job in-
stances. The real difference in algorithms’ performances can be found
when we compare the results for the timed-out MIP instances. Fig. 3
compares the solution time for the two heuristics whereas the MIP was
timed out after 7200 s. Our GA-based algorithm, consistently found
better results with in certain time limit.

7.2. Experimental results

The performance of GA and the proposed mathematical model is
compared by computing a performance ratio. Let performance ratio PR
be defined as the ratio of the objective function value obtained by GA
(OF;,) for a problem instance to the optimal objective function value
produced by the mathematical model (OF,) for the same problem in-
stance (Erramilli & Mason, 2006). While the PR ratio can be computed
for any objective function case of interest, it is only valid when the MIP

Initialization;
t «— 0;
Define S as the set containing all permutations of (1,2,3,...,n);

Define P(t) C S as the initial population of permutations;

Define F as a fitness function to evaluate the fitness of each individual p € P(t);

Define arrF as an array to store the values of the fitness functions;

while ¢ < Max Generations do
Build parent population P,(t) based on selection criterion;
for t =1 to popSize do

Randomly select two elements (u,v) € Py,(t);

Apply Mutation function M on offspring;
if F(u,) > Fpest then

Frest F(u,);

Shest = Uo;

end

Add u, to new generation’s population;

end

t—t+1;

if Average change in last 50 elements in arrF < € then
break;

end

end

Result: Write the output results

Perform crossover function C' to obtain offspring. u, = C'(u,v);

184

S. Chalil Madathil et al.

Equipment settings 1
5 jobs 15 jobs

[
!
10000 | !
[
|

1000 |
i i

Y VP R) U Y S

100

baddia
pocmetocosocee satemyeongosete .u....o....-.l

(=}

| i
f

F

Time in minutes (log 10 scale)

e
=

0.01

Computers & Industrial Engineering 121 (2018) 177-188

Equipment settings 2
5 jobs 15 jobs

r«\ affrern

L

[
SRS Y |

e 3

:

[0%00 0 %ecte 00000 000 %e0 000 0e®ese 0 0000 04, ¢ %00 sree .I

—MIP
ProcedureSP

Fig. 2. Solution time comparison for optimally completed MIP instances.

model produces an optimal solution. In this way, an estimate of the
quality of the GA solution is obtained in terms of its percent above the
optimal solution value.

Once the results are obtained for each instance, the PR values can be
averaged across all experimental instances for a given type of problem
type (e.g., all instances with five jobs). The set of like problem instances
is characterized in terms of (n, 7, T, R, mc). In this expression, n is the
number of jobs and 1, = 0 denotes all 0 job ready times while r, = 1
denotes the presence of non-zero ready times. Further, T and R are the
due date-related parameters described above and mc represents the
machine configuration (scenario 1 or scenario 2) from Table 3. An ex-
ample for this instance characterization approach is (15,0,0.3,2.5,1),
which represents the average PR values for problems with 15 jobs that
have zero job ready times, T and R values of 0.3 and 2.5, respectively,
and machine configuration of scenario 1 from Table 3.

| Equipment settings 1

15 jobs 25 jobs

!
1000 :
! b
!

Time in minutes (log 10 scale)

-,

Table 5 presents a summary of the average performance ratios for
every experimental factor of interest. This summary is segmented ac-
cording to the number of jobs (n) and objective function under study. A
“*” for an experimental factor denotes that all instances at all possible
levels were combined. For example, Table 5 row labeled (5,0,*,*,*
contains the average performance ratio of all instances with n = 5 jobs
and no ready times (i.e., n, = 0), while the (25, *, *,2.5, *) rows contains
the average performance ratio for all 25 job instances with due date
range factor R = 2.5. For each objective function, the number given in
parentheses denotes the number of optimal solutions that were found
across the 80 instances analyzed. Finally, a Table 5 entry of “N/A (0)”
denotes the case wherein no optimal solutions were found; therefore, no
average performance ratio can be computed.

Next performance measure is the heuristic ratio (HR) metric, which
is defined as the ratio of the objective function value obtained by GA

Equipment settings 2 |
i
15 jobs ! 25 jobs i
I :
. R

Wivtazun i

N
RN DR NP,)

Fig. 3. Solution time comparison for time-limited MIP instances.

S. Chalil Madathil et al.

Computers & Industrial Engineering 121 (2018) 177-188

Table 5
Performance ratio.
Algorithm 3 Algorithm 1

n, rg, T, R, me Crmax WCT TWT Cimax WCT TWT
(5,0,%,%,%) 1.02 (80) 1.01 (80) 1.02 (80) 1.02 (80) 1.01 (80) 1.07 (80)
(5,1,%,%,%) 1.01 (80) 1.01 (80) 1.01 (80) 1.00 (80) 1.01 (80) 1.01 (80)
(5,%,0.3,%,%) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.07 (80)
(5,%,0.6,%,%) 1.01 (80) 1.01 (80) 1.02 (80) 1.01 (80) 1.01 (80) 1.01 (80)
(5,%,%,0.5,%) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.06 (80)
(5,%,%,2.5,%) 1.01 (80) 1.01 (80) 1.02 (80) 1.01 (80) 1.01 (80) 1.01 (80)
(5,%,%,%,1) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.01 (80) 1.00 (80)
(5,%,%,%,2) 1.02 (80) 1.01 (80) 1.03 (80) 1.02 (80) 1.01 (80) 1.06 (80)
(15,0,*,%,%) 1.16 (20) N/A 1.08 (45) 1.15 (20) N/A 1.10 (45)
(15,1,*,*,%) 1.02 (79) 1.02 (55) 1.02 (80) 1.01 (79) 1.01 (55) 1.10 (80)
(15,%,0.3,%,%) 1.06 (50) 1.01 (24) 1.03 (76) 1.04 (50) 1.01 (24) 1.11 (76)
(15,%,0.6,%,%) 1.04 (49) 1.02 (31) 1.05 (49) 1.03 (49) 1.01 (31) 1.08 (49)
(15,%,%,0.5,%) 1.05 (51) 1.02 (28) 1.03 (59) 1.05 (51) 1.01 (28) 1.13 (59)
(15, 1.04 (48) 1.02 (27) 1.04 (66) 1.03 (48) 1.01 (27) 1.08 (66)
(15, 1.04 (55) 1.01 (35) 1.02 (64) 1.04 (55) 1.01 (35) 1.02 (64)
(15,%,%,* 1.05 (44) 1.03 (20) 1.06 (61) 1.04 (44) 1.02 (20) 1.18 (61)
(25,0,*,*,*) N/A N/A 1.13 (31) N/A N/A 1.28 (31)
(25,1,%,%,%) 1.08 (78) 1.02 (8) 1.06 (77) 1.03 (78) 1.01 (8) 1.18 (77)
(25,%,0.3,%,%) 1.08 (39) 1.02 (4) 1.05 (71) 1.02 (39) 1.01 (4 1.20 (71)
(25,%,0.6,*,%) 1.08 (39) 1.02 (4) 1.09 (37) 1.03 (39) 1.01 4 1.19 (37)
(25,%,%,0.5,%) 1.09 (39) 1.01 (3) 1.07 (57) 1.03 (39) 1.01 (3) 1.17 (57)
(25,%,%,2.5,%) 1.08 (39) 1.02 (5) 1.06 (51) 1.03 (39) 1.01 (5) 1.21 (51)
(25,%,%,%,1) 1.04 (40) 1.02 (8) 1.05 (53) 1.01 (40) 1.01 (8) 1.08 (53)
(25,%,*,%,2) 1.13 (38) N/A 1.09 (55) 1.04 (38) N/A 1.31 (55)

Table 6

Heuristic ratio.

Algorithm 3 Algorithm 1

n, rg, T, R, me Crnax WCT TWT Crnax WCT TWT
(15,0,*,%,%) 1.09 (60) 1.03 (80) 1.15 (34) 1.08 (60) 1.05 (80) 1.26 (34)
(15,1,*,*,%) 1.01 (1) 1.04 (25) N/A 1.01 (1) 1.05 (25) N/A
(15,%,0.3,*,%) 1.09 (30) 1.03 (56) 1.10 (3) 1.09 (30) 1.05 (56) 1.28 (3)
(15,%,0.6,*,%) 1.08 (31) 1.03 (49) 1.15 (31) 1.08 (31) 1.06 (49) 1.25 (31)
(15,%,%,0.5,*) 1.08 (29) 1.03 (52) 1.15 (20) 1.08 (29) 1.05 (52) 1.23 (20)
(15,%,%,2.5,%) 1.09 (32) 1.03 (53) 1.14 14) 1.09 (32) 1.06 (53) 1.29 (14)
(15,%,%,%,1) 1.10 (25) 1.02 (45) 1.10 (15) 1.09 (25) 1.04 (45) 1.13 (15)
(15,%,%,%,2) 1.08 (36) 1.04 (60) 1.18 (19) 1.08 (36) 1.06 (60) 1.35 (19)
(25,0,*,*,%) 1.16 (80) 1.02 (80) 1.16 (48) 1.17 (80) 1.10 (80) 1.36 (48)
(25,1,%,%,%) 1.21 (2) 1.05 (72) 1.37 (3) 1.16 (2) 1.07 (72) 1.52 (3)
(25,%,0.3,%,%) 1.15 (41) 1.04 (76) 1.19 (8) 1.17 (41) 1.08 (76) 1.27 (8)
(25,%,0.6,%,%) 1.16 (41) 1.03 (76) 1.17 (43) 1.17 (41) 1.08 (76) 1.38 (43)
(25,%,%,0.5,%) 1.16 (41) 1.03 (77) 1.14 (22) 1.17 (41) 1.07 (77) 1.31 (22)
(25,%,%,2.5,%) 1.15 (41) 1.04 (75) 1.20 (29) 1.17 (41) 1.09 (75) 1.41 (29)
(25,%,%,%,1) 1.19 (40) 1.03 (72) 1.14 (26) 1.19 (40) 1.07 (72) 1.27 (26)
(25, %,%,* 1.13 (42) 1.03 (80) 1.20 (25) 1.15 (42) 1.10 (80) 1.46 (25)

(OF;,4) for a problem instance to the non-optimal objective function
value produced by the mathematical model in 7200s (OFyy) for the
same problem instance. The average heuristic ratio for each experi-
mental factor level by objective function is shown in Table 6. A Table 5
entry of “N/A (0)” denotes the case wherein optimal solutions were
found for all instances; therefore, no average heuristic ratio can be
computed. The GA produced results that are 20% above the time-lim-
ited MIP model solution for the makespan objective function. However,
the 20% above optimal performance is obtained in less than 5 min. One
other observation that was obtained from Table 6 is that when the
problem instance is small, the mathematical problem solved the in-
stances to optimality for all scenarios and hence an HR is not available
for those instances that had five jobs.

186

7.3. Analysis

From the results it is clear that the sets of instances, that have ready
times, performed better than those sets of instances whose ready times
are zero. This pattern is consistent irrespective of the number of jobs or
the type objective function. The performance of the heuristic is also
compared based on the two equipment scenarios mentioned in Table 3.
As the number of tools are reduced, the performance ratios is seen to be
increased which is as expected. As the number of tools is reduced, the
tightness of the resources increases which results in an increased value
for average performance ratios. The parameters T and R have negligible
impact on the average performance.

The results for the average heuristic ratio for set of instances with
ready times and without ready times follow similar pattern as the

S. Chalil Madathil et al.

average performance ratio. Similar to the performance ratio, heuristic
ratio also seems to perform better for weighted completion time (WCT)
and makespan (Cp,) followed by the performance for total weighted
tardiness (TWT). The GA fared better than Algorithm 1 for the objective
function WCT, TWT and most instances of Cy,qy.

8. Conclusion and future work

A mixed-integer programming (MIP) formulation for the photo-
lithography process with individual and cluster tool was developed for
improved job scheduling. Due to this problem’s complexity, a heuristic
was developed to analyze our experimental cases. When comparing the
solution approaches, the MIP model provides better results but took a
considerable amount of time. The heuristic approach achieved some
good results in a very short span of time. The two heuristics’ perfor-
mance comparison showed the GA-based algorithm is efficient to
schedule a photolithography process that involves larger number of
jobs. The heuristic method could be employed to scenarios when there
is an unexpected machine downtime, shift changes, and changes in due
dates. The heuristic seems to perform well for the objective function
WCT and Cy,4. A better heuristic for TWT can be developed that can
produce better results when compared to the current GA algorithm.
Future work includes developing improved heuristic solutions to obtain
better results by considering the job availability at every instant. The
research can be extended to deal with finding a solution for minimizing
other objectives like minimizing the total number of tardy jobs, mini-
mizing maximum lateness, or to extend the research to investigate so-
lutions for multiple objective problems.

References

Arisha, A., & Young, P. (2004). Intelligent simulation-based lot scheduling of photo-
lithography toolsets in a wafer fabrication facility. Proceedings of the 2004 Winter
Simulation Conference, 2004: Vol. 2, (pp. 1935-1942). . http://dx.doi.org/10.1109/
WSC.2004.1371552.

Cardarelli, E., & Pelagagge, P. M. (1995). Simulation tool for design and management
optimization of automated interbay material handling and storage systems for large
wafer fab. IEEE Transactions on Semiconductor Manufacturing, 8(1), 44-49. http://dx.
doi.org/10.1109/66.350756.

Cheng, J., Karuno, Y., & Kise, H. (2001). A shifting bottleneck approach for a parallel-
machine flowshop scheduling problem. Journal of the Operations Research Society of
Japan, 44(2), 140-156. http://dx.doi.org/10.15807 /jorsj.44.140.

Chiang, T.-C. (2013). Enhancing rule-based scheduling in wafer fabrication facilities by
evolutionary algorithms: Review and opportunity. Computers & Industrial Engineering,
64(1), 524-535. http://dx.doi.org/10.1016/j.cie.2012.08.009.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (2012). Theory of scheduling. Courier
Corporation.

Erramilli, V., & Mason, S. J. (2006). Multiple orders per job compatible batch scheduling.
IEEE Transactions on Electronics Packaging Manufacturing, 29(4), 285-296. http://dx.
doi.org/10.1109/TEPM.2006.887355.

Floudas, C. A., & Lin, X. (2005). Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139(1),
131-162. http://dx.doi.org/10.1007/s10479-005-3446-x.

Fourer, R., Gay, D. M., & Kernighan, B. W. (1990). A modeling language for mathematical
programming. Management Science, 36(5), 519-554. http://dx.doi.org/10.1287/
mnsc.36.5.519.

Fourer, R., Gay, D. M., & Kernighan, B. (1993). Ampl, Vol. 117. MA: Boyd & Fraser
Danvers.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5, 287-326. http://dx.doi.org/10.1016/50167-5060(08)70356-X.

Graves, S. C., Meal, H. C., Stefek, D., & Zeghmi, A. H. (1983). Scheduling of re-entrant
flow shops. Journal of Operations Management, 3(4), 197-207. http://dx.doi.org/10.
1016/0272-6963(83)90004-9.

Gurobi Optimization, I. (2016). Gurobi optimizer reference manual. < http://www.
gurobi.com > .

Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis
with applications to biologyControl and artificial intelligenceCambridge, MA, USA: MIT
Press.

Hoogeveen, J. A,, Lenstra, J. K., & Veltman, B. (1996). Preemptive scheduling in a two-
stage multiprocessor flow shop is np-hard. European Journal of Operational Research,
89(1), 172-175. http://dx.doi.org/10.1016/50377-2217(96)90070-3.

Computers & Industrial Engineering 121 (2018) 177-188

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, & Werner, F. (2007). Algorithms for
flexible flow shop problems with unrelated parallel machines, setup times, and dual
criteria. The International Journal of Advanced Manufacturing Technology, 37(3),
354-370. http://dx.doi.org/10.1007/s00170-007-0977-0.

Kock, A., Veeger, C., Etman, L., Lemmen, B., & Rooda, J. (2007). Cycle time and
throughput performance analysis of a litho cell using an aggregate modeling ap-
proach. Proc. adv. semi. manuf. conf.(ASMC) (pp. 65-70). .

Kyparisis, G. J., & Koulamas, C. (2001). A note on weighted completion time minimiza-
tion in a flexible flow shop. Operations Research Letters, 29(1), 5-11. http://dx.doi.
org/10.1016/50167-6377(01)00072-4.

Lee, T. E. (2008). A review of scheduling theory and methods for semiconductor manu-
facturing cluster tools. 2008 Winter simulation conference (pp. 2127-2135). . http://
dx.doi.org/10.1109/WSC.2008.4736310.

Liu, N., Abdelrahman, M. A., & Ramaswamy, S. (2003). A genetic algorithm for the single
machine total weighted tardiness problem. Proceedings of the 35th southeastern sym-
posium on system theory, 2003 (pp. 34-38). . http://dx.doi.org/10.1109/SSST.2003.
1194525.

Lowe, J. J., & Mason, S. J. (2016). Integrated semiconductor supply chain production
planning. IEEE Transactions on Semiconductor Manufacturing, 29(2), 116-126. http://
dx.doi.org/10.1109/TSM.2016.2544202.

McGuigan, T. C. (1992). Modeling the lot selection process in semiconductor photo-
lithography processing. Proceedings of the 24th conference on winter simulation, WSC
’92 (pp. 885-889). New York, NY, USA: ACM. http://dx.doi.org/10.1145/167293.
167763.

Mehta, S. V., & Uzsoy, R. (1998). Minimizing total tardiness on a batch processing ma-
chine with incompatible job families. IIE Transactions, 30(2), 165-178. http://dx.doi.
org/10.1023/A:1007466101115.

Monch, L., Fowler, J. W., Dauzére-Pérés, S., Mason, S. J., & Rose, O. (2011). A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations. Journal of Scheduling, 14(6), 583-599. http://dx.doi.org/
10.1007/s10951-010-0222-9.

Montazeri, M., & Van Wassenhove, L. (1990). Analysis of scheduling rules for an FMS. The
International Journal of Production Research, 28(4), 785-802. http://dx.doi.org/10.
1080/00207549008942754.

Oduguwa, V., Tiwari, A., & Roy, R. (2005). Evolutionary computing in manufacturing
industry: An overview of recent applications. Applied Soft Computing, 5(3), 281-299.
http://dx.doi.org/10.1016/j.as0c.2004.08.003.

Pan, C., Zhou, M., Qiao, Y., & Wu, N. (2018). Scheduling cluster tools in semiconductor
manufacturing: Recent advances and challenges. IEEE Transactions on Automation
Science and Engineering, 15(2), 586-601. http://dx.doi.org/10.1109/TASE.2016.
2642997.

Park, J. Y., Park, K., & Morrison, J. R. (2017). Models of clustered photolithography tools
for fab-level simulation: From affine to flow line. IEEE Transactions on Semiconductor
Manufacturing, 30(4), 547-558. http://dx.doi.org/10.1109/TSM.2017.2752755.

Pinedo, M. L. (1995). Scheduling: Theory, algorithms and systems. http://dx.doi.org/10.
1007/978-1-4614-2361-4.

Pugazhenthi, R., & Anthony Xavior, M. (2014). A genetic algorithm applied heuristic to
minimize the makespan in a flow shop. Procedia Engineering, 97, 1735-1744. http://
dx.doi.org/10.1016/j.proeng.2014.12.325.

Ramachandra, G., & Elmaghraby, S. E. (2006). Sequencing precedence-related jobs on
two machines to minimize the weighted completion time. International Journal of
Production Economics, 100(1), 44-58. http://dx.doi.org/10.1016/j.ijpe.2004.10.014.

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility. European Journal of Operational
Research, 169(3), 781-800. http://dx.doi.org/10.1016/j.ejor.2004.06.038.

Ruiz, R., & Vazquez-Rodriguez, J. A. (2010). The hybrid flow shop scheduling problem.
European Journal of Operational Research, 205(1), 1-18. http://dx.doi.org/10.1016/j.
ejor.2009.09.024.

Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for op-
erational control in wafer fabrication. Production Planning and Control, 22(1), 4-24.
http://dx.doi.org/10.1080/09537287.2010.490014.

Sawik, T. (2011). Scheduling in supply chains using mixed integer programming. John Wiley &
Sons.

Sawik, T. (2012). Batch versus cyclic scheduling of flexible flow shops by mixed-integer
programming. International Journal of Production Research, 50(18), 5017-5034.
http://dx.doi.org/10.1080/00207543.2011.627388.

Sawik, T. (2014). A mixed integer program for cyclic scheduling of flexible flow lines.
Bulletin of the Polish Academy of Sciences: Technical Sciences, 62(1), 121-128. http://
dx.doi.org/10.2478/bpasts-2014-0014.

Sha, D., Hsu, S., Che, Z., & Chen, C. (2006). A dispatching rule for photolithography
scheduling with an on-line rework strategy. Computers & Industrial Engineering, 50(3),
233-247. http://dx.doi.org/10.1016/j.cie.2006.04.002.

Urlings, T. (2010). Heuristics and metaheuristics for heavily constrained hybrid flowshop
problems (Ph.D. thesis)Universitat Politécnica de Valéncia.

Uzsoy, R., Lee, C.-Y., & Martin-Vega, L. A. (1992). A review of production planning and
scheduling models in the semiconductor industry part I: System characteristics,
performance evaluation and production planning. IIE Transactions, 24(4), 47-60.
http://dx.doi.org/10.1080/07408179208964233.

Wu, C.-C., Hsu, P.-H., Chen, J.-C., & Wang, N.-S. (2011). Genetic algorithm for mini-
mizing the total weighted completion time scheduling problem with learning and
release times. Computers & Operations Research, 38(7), 1025-1034. http://dx.doi.org/
10.1016/j.cor.2010.11.001.

http://dx.doi.org/10.1109/WSC.2004.1371552
http://dx.doi.org/10.1109/WSC.2004.1371552
http://dx.doi.org/10.1109/66.350756
http://dx.doi.org/10.1109/66.350756
http://dx.doi.org/10.15807/jorsj.44.140
http://dx.doi.org/10.1016/j.cie.2012.08.009
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0025
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0025
http://dx.doi.org/10.1109/TEPM.2006.887355
http://dx.doi.org/10.1109/TEPM.2006.887355
http://dx.doi.org/10.1007/s10479-005-3446-x
http://dx.doi.org/10.1287/mnsc.36.5.519
http://dx.doi.org/10.1287/mnsc.36.5.519
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0045
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0045
http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/10.1016/0272-6963(83)90004-9
http://dx.doi.org/10.1016/0272-6963(83)90004-9
http://www.gurobi.com
http://www.gurobi.com
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0065
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0065
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0065
http://dx.doi.org/10.1016/S0377-2217(96)90070-3
http://dx.doi.org/10.1007/s00170-007-0977-0
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0080
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0080
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0080
http://dx.doi.org/10.1016/S0167-6377(01)00072-4
http://dx.doi.org/10.1016/S0167-6377(01)00072-4
http://dx.doi.org/10.1109/WSC.2008.4736310
http://dx.doi.org/10.1109/WSC.2008.4736310
http://dx.doi.org/10.1109/SSST.2003.1194525
http://dx.doi.org/10.1109/SSST.2003.1194525
http://dx.doi.org/10.1109/TSM.2016.2544202
http://dx.doi.org/10.1109/TSM.2016.2544202
http://dx.doi.org/10.1145/167293.167763
http://dx.doi.org/10.1145/167293.167763
http://dx.doi.org/10.1023/A:1007466101115
http://dx.doi.org/10.1023/A:1007466101115
http://dx.doi.org/10.1007/s10951-010-0222-9
http://dx.doi.org/10.1007/s10951-010-0222-9
http://dx.doi.org/10.1080/00207549008942754
http://dx.doi.org/10.1080/00207549008942754
http://dx.doi.org/10.1016/j.asoc.2004.08.003
http://dx.doi.org/10.1109/TASE.2016.2642997
http://dx.doi.org/10.1109/TASE.2016.2642997
http://dx.doi.org/10.1109/TSM.2017.2752755
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1016/j.proeng.2014.12.325
http://dx.doi.org/10.1016/j.proeng.2014.12.325
http://dx.doi.org/10.1016/j.ijpe.2004.10.014
http://dx.doi.org/10.1016/j.ejor.2004.06.038
http://dx.doi.org/10.1016/j.ejor.2009.09.024
http://dx.doi.org/10.1016/j.ejor.2009.09.024
http://dx.doi.org/10.1080/09537287.2010.490014
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0170
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0170
http://dx.doi.org/10.1080/00207543.2011.627388
http://dx.doi.org/10.2478/bpasts-2014-0014
http://dx.doi.org/10.2478/bpasts-2014-0014
http://dx.doi.org/10.1016/j.cie.2006.04.002
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0190
http://refhub.elsevier.com/S0360-8352(18)30245-6/h0190
http://dx.doi.org/10.1080/07408179208964233
http://dx.doi.org/10.1016/j.cor.2010.11.001
http://dx.doi.org/10.1016/j.cor.2010.11.001

S. Chalil Madathil et al.

Yim, S. J., & Lee, D. Y. (1999). Scheduling cluster tools in wafer fabrication using can-
didate list and simulated annealing. Journal of Intelligent Manufacturing, 10(6),
531-540. http://dx.doi.org/10.1023/A:1008904604531.

Zhang, P., Lv, Y., & Zhang, J. (2018). An improved imperialist competitive algorithm
based photolithography machines scheduling. International Journal of Production
Research, 56(3), 1017-1029. http://dx.doi.org/10.1080/00207543.2017.1346320.

Zhou, B.-h., Gao, Z.-s., & Chen, J. (2014). Scheduling algorithm of dual-armed cluster
tools with residency time and reentrant constraints. Journal of Central South
University, 21(1), 160-166. http://dx.doi.org/10.1007/s11771-014-1927-2.

Sreenath Chalil Madathil completed his Ph.D. from Department of Industrial
Engineering at Clemson University, Clemson SC. He completed his MS in Industrial
Engineering from Clemson University and B.Tech from Mahatma Gandhi University,
Kottayam.

188

Computers & Industrial Engineering 121 (2018) 177-188

Scott J. Mason is the Fluor Endowed Chair in Supply Chain Optimization and Logistics
and a Professor of Industrial Engineering at Clemson University. Prior to joining Clemson,
Dr. Mason spent 10 years in the Department of Industrial Engineering at the University
of Arkansas. He received his Ph. D. in Industrial Engineering from Arizona State
University after earning Bachelor’s and Master’s degrees from The University of Texas at
Austin. He is a senior member of the Institute for Industrial Engineers and a member of
INFORMS.

Mary E. Kurz is an Associate Professor of Industrial Engineering at Clemson University.
She received her Ph. D. in Systems and Industrial Engineering from University of Arizona
as well as her Master’s and Bachelor’s in Systems engineering. She is a senior member of
the Institute for Industrial Engineers and a member of INFORMS.

http://dx.doi.org/10.1023/A:1008904604531
http://dx.doi.org/10.1080/00207543.2017.1346320
http://dx.doi.org/10.1007/s11771-014-1927-2

	On scheduling a photolithography area containing cluster tools
	Introduction
	Literature review
	Problem description
	Photolithography stages
	Methodology

	Mathematical formulation
	Model parameters and variables
	Notation

	Model formulation

	Experimental study
	Experimental plan
	Model execution

	Heuristic algorithm
	Constructive heuristics
	Genetic algorithm
	Crossover function
	Mutation function
	Fitness function

	Results
	Solution time performance
	Experimental results
	Analysis

	Conclusion and future work
	References

