
Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

An effective integer program for a general assembly line balancing problem
with parallel workers and additional assignment restrictions

Bryan W. Pearce, Kavit Antani, Laine Mears, Kilian Funk, Maria E. Mayorga, Mary E. Kurz⁎

Clemson University, United States

A R T I C L E I N F O

Keywords:
General assembly line balancing
Heuristics
integer programming models

A B S T R A C T

The scope of the assembly line balancing problem in research is clear, with well-defined sets of assumptions,
parameters, and objective functions. In application, these borders are frequently transgressed. Many of these
deviations are internal to the assembly line balancing problem itself, arising from any of the physical or tech-
nological features in modern assembly lines. Other issues are founded in the tight coupling of assembly line
balancing with external production planning and management problems, as assembly lines are at the intersec-
tion of multiple related problems in job sequencing, part flow logistics, worker safety, and quality. General
assembly line balancing is devoted to studying the solution techniques necessary to model these applied line
balancing problems.

This article presents a complex line balancing problem based on the real production environment of our
industrial partner, featuring several extensions for task-to-task relationships, station characteristics limiting
assignment, and parallel worker zoning interactions. A heuristic, combining rank-position-weighting, last-fit-
improvement and iterative blocking scheme, and an integer program that can manage multiple constraint types
simultaneously, are developed. An experiment is conducted testing each of these new solution methods upon a
battery of testbed problems, measuring solution quality, runtime, and achievement of feasibility. Results indicate
that the integer programming model provides a viable solution method for those industries with access to
commercial solvers.

1. Introduction

The traditional form of an assembly line, as described by Scholl [1],
is a production system consisting of a configuration of consecutive
workstations, typically using some material handling equipment to
transport workpieces down the line at a constant rate. The total work to
be performed along the assembly line is subdivided into the smallest
indivisible elements of work, called tasks, and each task i possesses an
associated task time (ti). Tasks are related to one another by precedence
attributes, i.e. some tasks must be finished before others can begin,
usually due to the physical architecture of the workpiece. Stations are
spaced along the line such that there is one workpiece present at each
station, and all stations are allotted a fixed cycle time (C) to execute
tasks before the conveyor moves the workpiece to the next station.

The assembly line balancing problem (ALB) is a production plan-
ning problem concerned with allocating tasks to the stations on the
assembly line, first proposed and formulated as a mathematical pro-
gramming problem in [2]. A solution to the ALB is an assignment of
tasks to stations. One common objective is to minimize the number of

stations given a fixed cycle time; this optimization problem is NP-hard
[3].

ALB appeared in the literature in the 1950s. By the early 1970s,
algorithmic ALB methods had proliferated, yet a survey at that time
found that only approximately 5% of companies were using published
methods to solve their internal ALB problems [4]. Many articles attest
to the continuing prominence of intuitive methods over algorithmic
ones developed by the research community, covering all decades of the
intervening time period [5–8]. A field book published as recently as
2012 [9] makes no mention of algorithmic methods at all, instead re-
commending a manual approach, in consultation with a process expert
to ensure the balance is feasible. The simplest explanation for the lack
of algorithms implemented in industry may be the fact that finding a
feasible solution to an ALB can usually be accomplished by hand. The
manual solution will perhaps not be optimal, but might at least be good
enough to seem acceptable to management. Companies with expertise
in product design, as opposed to assembly system design, may not have
the information infrastructure to support computational methods of line
balancing (perhaps precedence data is unavailable, for example).

https://doi.org/10.1016/j.jmsy.2018.12.011
Received 9 November 2018; Accepted 24 December 2018

⁎ Corresponding author.
E-mail address: mkurz@clemson.edu (M.E. Kurz).

Journal of Manufacturing Systems 50 (2019) 180–192

Available online 09 January 2019
0278-6125/ © 2019 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2018.12.011
https://doi.org/10.1016/j.jmsy.2018.12.011
mailto:mkurz@clemson.edu
https://doi.org/10.1016/j.jmsy.2018.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2018.12.011&domain=pdf

Additionally, there are certain normal translational difficulties for any
new theoretical work. Industry adoption requires potential adopters to
learn that the theoretical methods exist, overcome organizational in-
ertia resisting change, and, of course, financial investment to imple-
ment the change.

The real-world ALB problem may possess features that either by
themselves, or in conjunction with one another, are not modeled by any
published solution procedure. No published contribution offers ALB
modeling methods with the constraint detail necessary to capture op-
erational dynamics at a facility manufacturing complex products in a
mixed-model environment. The use of ALB solution methods with in-
sufficient constraint modeling renders any generated solution vulner-
able to infeasibility. A practitioner might develop new methods as
needed, with appropriate background and skill. Given the deliverable-
oriented nature of many process engineering job duties, however, it is
perhaps uncommon that such research would be undertaken.

In this paper, we describe related literature and the specific problem
environment of interest in Sections 2 and 3. We propose the MRPW-LFI-
WZBlock Heuristic in Section 4, followed by an integer programming
formulation in Section 5. In Section 6, we present the test bed of pro-
blems, based on industry problem sets, upon which the heuristic and
integer program are evaluated. Section 6 also contains the discussion of
the results. Section 7 concludes the paper.

2. Related literature

The classification and terminology suggestions from the surveys of
Refs. [1,10,11,12] have been herein adopted, with any conflict favoring
the more recent publication. We focus this review on the features most
relevant to our industrial setting. Salveson’s initial formulation is
known as the simple assembly line balancing problem (sALB) [10,11],
as it features a number of simplifying assumptions:

1 Mass-production of one homogenous product.
2 All tasks are processed in a predetermined mode (no processing
alternatives exist).

3 Paced line with a fixed common cycle time according to a desired
output quantity.

4 The line is considered to be serial with no feeder lines or parallel
elements.

5 The processing sequence of tasks is subject to precedence restric-
tions.

6 Deterministic (and integral) task times.
7 No assignment restrictions of tasks besides precedence constraints.
8 A task cannot be split among two or more stations.
9 All stations are equally equipped with respect to machines and
workers.

Deviations from the above assumptions are classified as general ALB
(gALB) problems. Regardless of the deviation, almost all gALB problems
still require the following minimal set of constraints to be satisfied:

• All tasks are assigned to some station, and the workpiece is finished
upon exiting the final station.

• All precedence relationships must be satisfied.

• The sum of task times at each station cannot exceed the cycle time.

In addition to precedence constraints, many real-world problems
exhibit tooling, zoning, worker skill, and other characteristics that re-
strict the assignment of tasks to stations and/or the relative assignment
of tasks to one another. Tooling availability and worker skill have been
addressed in a branch and bound model [13]. High complexity tasks are
grouped together such that high skill operators can be assigned to those
stations. A hybrid adaptive search and genetic algorithm has examined
task sets that are ineligible for assignment within the same station [14].
Additionally, a hybrid heuristic/genetic algorithm approach has been

used to minimize a composite fatigue score to address the effects of
physical fatigue on workers from tasks that vary in difficulty in a system
with a given number of stations and cycle time [15].

Assembly lines with parallel workers allow multiple workers per
station and are appropriate for workpieces large enough to permit
several workers with simultaneous access, e.g. larger home appliances,
cars or airplanes. Allowing multiple workers per station may reduce the
number of stations required, resulting in corresponding improvements
to factory floor space utilization and facility capital construction costs.
Consolidation of workers into the same station as one another may also
allow sharing of fixed tooling resources between them, reducing capital
costs. Material handling costs may also be reduced, as there are fewer
destinations to support with part delivery, spread across a smaller
footprint. Lastly, multiple worker lines may realize superior line bal-
ancing solutions due to reduced worker movement around the work-
piece, as each worker can be assigned tasks that only appear in a spe-
cific zone [16,17].

The first parallel ALB considered lines in which there are two dis-
tinct sides to the assembly line, and proposed a priority heuristic to
generate a solution [16]. Tasks are classified into the sets {left, right,
either} corresponding to the side of the line to which they may be as-
signed. A genetic algorithm methodology was later introduced for this
gALB problem [18]. An important consideration for simultaneous work
is that precedence related tasks might be assigned to separate sides of
the line, resulting in one side waiting for the other to finish a task in
order to begin work on the next one. Two supplementary objective
function were offered to address this issue: 1) work relatedness, which
promotes tasks that have an immediate precedence relationship to be
assigned to the same station, and 2) work slackness, which promotes
those tasks to have a large time gap between them if they cannot be
assigned to the same station [17]. A stochastic single-pass prioritization
heuristic was created for a two-sided assembly line that manufactures
appliances [19]. An ant-colony metaheuristic was proposed for a two-
sided assembly line that produces domestic products [20], which was
extended to include secondary vertical and horizontal balancing ob-
jectives [21]. Previous two-sided ALB models were extended and ad-
dressed by a multi-objective particle swarm optimization approach that
incorporates work relatedness, utilization, and vertical smoothing [22].
Four work zones and additional constraints to require certain sets of
tasks be assigned to the same station were considered and addressed by
a hybrid DP and tabu search algorithm to vertically smooth workloads
over a given number of stations [23].

Solution methods for ALB problems are often based on the Ranked
Positional Weight (RPW) heuristic [24]. RPW is designed for fixed cycle
time version of SALB, and attempts to pack stations with tasks by as-
signing them one at a time starting at the beginning of the assembly
line. Each task is sorted by a weight that is equal to its task time plus the
task times of all of its successor tasks, which ensures that no task will be
before one of its predecessors in the sorted list. Each task, considered in
the resulting order, is placed at the earliest station that meets both
constraint criteria: 1) sufficient time capacity exists at the station to
place the task, and 2) no predecessor of the task is at a later station. The
Inverse Positional Weight heuristic is identical to RPW except that tasks
are weighted as the sum of their task time and all predecessor task
times. The assignment sequence begins at the final station instead of the
first [24]. The Related Activity heuristic scores tasks in the same way as
the Inverse Positional Weight heuristic but restricts task selection to the
task with the largest score that is smaller than the cycle time [25]. The
selected task is assigned to a new worker, along with all predecessor
tasks. The algorithm then recalculates scores for all unassigned tasks,
and repeats the assignment process. Upon completion the set of workers
are then sequenced according to precedence validity.

Tonge [26,27], developed a heuristic that groups sets of tasks that
are directly connected in the precedence graph and treats these groups
as single tasks. The resulting groups are approximately equal in ag-
gregate time. A valid assignment is sought using the much-reduced task

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

181

set size. If an assignment is found, the algorithm then seeks to improve
the solution by smoothing tasks from one station into an adjacent one,
while preserving precedence and cycle time constraint satisfaction. If
no solution can be found with a given task grouping, then the groups
are broken into smaller subsets and the process repeats. Pinto et al. also
utilized the network inspired procedure, in which tasks are grouped
together via adjacencies on the precedence graph. These super-nodes
are then sequenced and fitted into stations to evaluate the resulting
balance. The procedure is iterated with differing heuristic rules for
constructing the super-nodes [28].

Baybars developed a set of preprocessing steps oriented to reducing
problem complexity [10,11]. The input data is analyzed for complexity
saving opportunities, such as decomposing the original problem into
smaller sub-problems, or detection of implicit assignment constraints.
After preprocessing a heuristic procedure assigns tasks one at a time
beginning at the end of the assembly line. The task prioritization metric
considers the subset of tasks with no currently unassigned successors,
and then chooses the one with the highest number of predecessors. The
chosen task is then assigned to the latest possible station.

Tonge utilized a suite of prioritization metrics coupled with a one-
at-a-time task assignment approach [29]. After each task assignment, a
randomly selected heuristic is used to select the next task. Tonge re-
ported a competitive result from executing multiple runs of this heur-
istic, though it is likely this performance was due to the wider solution
space search afforded by the element of randomness in each run.

The COMSOAL algorithm [30] expanded upon the work of [29]. On
the first pass the selection probabilities are uniform between all tasks
that have no unassigned predecessors, though these probabilities may
change as the algorithm iterates. COMSOAL can be characterized as a
form of learning algorithm, as objective function performance is used as
an input between iterations to bias the probabilistic selection steps in
future iterations. Nine methods are given for inducing bias into the
probabilistic search.

3. Problem environment and additional constraints

The motivating context for this research is automotive engineering.
We consider a vehicle to be the representative workpiece. Table 1
provides an overview summary of the features of the problem under
consideration in this paper. The classification system of Boysen et al.
[31] is noted for each feature in the right-most column.

This research utilizes the Type 1 objective function, to minimize the
number of workers, as cycle time is fixed by consumer demand and not
subject to the line balancing process. While holding cycle time constant,
the number of stations in the solution is a function of the optimization
performance.

3.1. Parallel workers and zoning constraints

Zoning constraints are introduced to prevent interference between
parallel workers in the same station. The physical space that the vehicle
occupies on the conveyor is partitioned into a set W of five work zones
(WZ): {V (front), R (right), L (left), H (rear), and I (center)}. Every
station will have between zero and five assigned workers, each of which
is responsible for a single WZ. Tasks must be assigned to both a station

and a WZ in order to ascribe them to a unique worker.
Each task i is encoded with one of nine Product Zones (PZ) L=

{RV,MV,LV,RM,MM, LM,RH,MH,LH} corresponding to location on the
vehicle with which the task interacts, divided into a 9-zone grid. Fig. 1
displays the WZ and PZ zoning divisions.

Workers may only be assigned a task if the worker’s WZ overlaps
with the PZ of the task. Each WZ is initially eligible to cover three or
more PZ, as shown in Fig. 2. For example, a worker in the V WZ has the
RV, MV, and LV product zones within reach.

While Fig. 2 shows all potential matches between PZ and compa-
tible WZ, some pairings cannot be activated simultaneously. To avoid
interference problems between workers, each PZ may only be assigned
to one WZ within each station. For example, while the LV PZ may be
assigned to either the L or the V WZ, it may not be assigned to both
within any given station. All tasks that are located in the LV PZ must be
assigned to the same worker, either the L or the V worker.

Fig. 3 illustrates this zoning conflict. The lightning bolt flags 1 and 3
show workers attempting to perform tasks upon the same area of the
vehicle.

3.2. Task to task constraints

Adjacency requires the involved tasks to be performed consecutively
by the same worker. Consider two tasks: Task A requires collecting a
part, and Task B installs that part on the vehicle. In addition, Task A
must immediately precede Task B, because the worker’s hands are full
with the part and no other tasks should intervene. A same-takt (worker)
constraint requires the involved tasks to be performed by the same
worker, but not necessarily consecutively. A same-station constraint
requires the involved tasks to be performed on the same station, but not
necessarily by the same worker. Consider the example of headliner
installation. Due to the size of the part, installation requires several
workers to hold the part during the install. Each of these workers is
assigned a different task, but all tasks must be done in tandem.
Collectively these tasks must be assigned to the same station. In con-
trast, the not-same-takt constraints forbid the same worker from per-
forming the related tasks, e.g. an inspection task that must be performed
by a separate worker from the install task.

3.3. Station constraints

Resource constraints involve stations that possess fixed resources
that are necessary to complete certain tasks, e.g. robotic lift support,
pneumatic tooling. There may be one or more of each of these resources
distributed along the line, and any task that interacts with a certain
resource is forced to be assigned to a station that possesses the resource.

Fixed resources generally are located on one side of the line or the
other, and can only be used upon the side of the vehicle that is facing it.
Fixed resource coverage zones (TZ) are defined as shown in Fig. 4. A
fixed resource covers the six PZ that are on the same side of the vehicle.
The fixed resource may satisfy the resource needs of any task in those
PZ that is assigned at the station.

Vehicles may assume one of eight orientations relative to the con-
veyor, and the orientation may change between stations. For example,
the vehicle may be oriented nose-first in one station, then rotate 90

Table 1
gALB Problem Features Considered.

Feature Description Class

Parallel workers Up to five workers may be assigned at each station, each with a non-overlapping work area dynamically determined by the set of tasks
assigned

=β pwork3
5

Mixed model Intermixed sequences of different models are produced on the assembly line =α mix1
Grouped tasks Task groups define tasks that must be performed by the same worker, or in the same station =α link5
Stationary resources Tasks that require fixed resources can only be assigned to stations that possess the resource =α fix5
Task exclusion Some tasks cannot be assigned to certain stations =α excl5

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

182

degrees such that the vehicle is sideways for the next station. Vehicle
orientation strongly affects zoning relationships, dictating which WZ,
PZ, and TZ are associated with one another at each station. Appendix B
in Supplementary material: IP Preprocessing shows zoning interactions
in detail.

Each PZ and WZ at a station may be inaccessible, due to the
structural layout of the station. An inaccessible WZ may not have a
worker assigned to the zone. Similarly, an inaccessible PZ at a station
indicates that tasks of that PZ may not be assigned at that station.
Physical obstructions such as pillars, robotic machinery, or the work-
piece carrier itself are common causes for inaccessible zone constraints.

The number of workers at any station may be capped at any value
0–5 (there are 5 WZs).

3.4. Notation convention

Table 2 presents the sets over which the parameters and variables in
the gALB problem are indexed, and the indexing variable typically used
when quantifying over each set. Table 3 presents input parameters for
each problem instance.

4. Constructive and improvement heuristics

Concepts from RPW have been extended to manage the features of
the production environment in question, including zoning constraints,
task groupings, and resource constraints. Several scoring metrics are
introduced that prioritize tasks that have difficult satisfaction require-
ments. The metrics prioritize tasks that require or support successor
tasks that require stationary resources on the assembly line.

Fig. 1. Work Zones (WZ) and Product Zones (PZ).

Fig. 2. Product Zones Eligible in each Work Zone.

Fig. 3. Zone Conflicts.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

183

Two improvement heuristics are developed in conjunction with the
constructive heuristic. The first, LFI, leverages the task prioritization
metrics from MRPW to consolidate tasks and remove lightly loaded
workers. The second improvement heuristic, termed the WZBlock ap-
proach, considers the problem of first selecting work zones then as-
signing tasks. Two new work zone scoring metrics are developed, or-
iented towards superior selection of the work zones available for
activation.

4.1. Modified ranked positional weight heuristic

The Modified Ranked Positional Weight (MRPW) heuristic, an
adaptation of RPW [24], seeks to identify a solution to the gALB pro-
blem described in Section 3. Let Pi be the set of all tasks that are pre-
decessors to task i, and Qi be the set of all tasks that are successors to

task i. The ranked positional weight score (ri) for each task is its own
time plus the sum of all successor task times, as shown in (1).

∑= +
∈

r t ti i
j Q

j
i (1)

A first-fit decreasing (FFD) assignment algorithm assigns tasks one
at a time, in descending order of ri score. The first station that satisfies
both precedence and cycle time constraints is assigned the task. The
RPW prioritization scheme ensures all predecessors are assigned prior
to their successors, as >r ri j if i is a predecessor of j, as j ∈ Qi and Qi ⊃
Qj.

4.1.1. Extension: grouping constraints
Adjacency, same-takt, and same-station relationships require the

related tasks to be assigned to the same station and/or worker. All tasks
in a same-takt group must also be assigned to the same station, and so
may be considered to be within a same-station group. Adjacency groups
generalize to same-takt groups using the same logic. Adjacency related
tasks, then, may also be considered to be in a same-takt group together
as well as being in a same-station group together. The term Gi detailed
in (2), represents the group of tasks that are related to task i, after fully
extending the domain of each task relationship.

∈ = = =j G a a aiff 1, 1, or 1i ij
adj

ij
st

ij
ss

(2)

See the example in Fig. 5. Tasks 4–6 are in a same-takt group (da-
shed line oval), and tasks 6 and 8 are in an adjacency group together
(solid line oval). Task 8 is implicitly included in the same-takt group.
The adjacency group, however, does not expand to include tasks 4 or 5.
All four tasks are mutually involved in the same G group.

Eqs. (1) and (3) define a responsibility set of tasks that require task i,
either directly or indirectly. First define Q̄i as the set that contains all
tasks that succeed task i or any task grouped with task i, but not any of
the tasks within the group Gi itself.

= ⋃
∈

Q Q G¯ ()\i
g G

g i
i (3)

Fig. 4. Fixed Resource Coverage Zones (TZ).

Table 2
Sets.

Symbol Description Index

I … nset of all tasks {1, , } i j,
K … Kset of all stations{1, , | |} k
W L R V H I Pset of all work zones { , , , , , } b
L LV MV RV LM MM RM LH MH RHset of all product zones { , , , , , , , , } l
F … Fset of all fixed resources (such as tools) {1, , | |} f
A set of assignment restriction types adj st ss nt{ , , , } (adjacency, same takt, same station, not same takt) u

Table 3
Problem Input Parameters.

Symbol Description

C Cycle time (sec)
ti Time of task i (sec)
li Product zone of task i; ∈l Li
Fi Set of fixed resources required by task i; each member is an element of F
pij Precedence relation between tasks i and j

pij =1 if i is an immediate predecessor of j; 0 otherwise

aij
u Assignment restriction of type u between tasks i and j

aij
u =1 if i and j have relationship ∈u A; 0 otherwise

Fk
p Set of fixed resources available at station k in product zone p; each

member is an element of F
Qif

u Fixed resource requirement for task i
Qif

u =1 if task i requires fixed resource f; 0 otherwise

skb
W Work zone accessibility: skb

W =1 if WZ b is accessible in station k; 0
otherwise

skl
P Product zone accessibility: slp

P =1 if PZ l is accessible in station k; 0

otherwise
sk

max Maximum number of workers that may be assigned to station k

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

184

The responsibility set Qi̿ recursively defines the set of all tasks that
are dependent on task i, either directly by precedence relationships or
indirectly by grouping with tasks that have precedence relationships.

= ⋃ ∪
∈

Q Q G̿ (̿)i
h Q

h i
¯i (4)

The set Gi is removed from set Q̄i in (3) to prevent self-referencing
recursion in the definition of (4), as would occur in the case of pre-
cedence relationships between tasks of the same group. Qi̿ contains task
i and all tasks in the group Gi, enabling calculation of a modified ranked
positional weight score ri

g that includes all tasks within the responsi-
bility set of i, shown in (5)

∑=
∈

r ti
g

j Q
j

i̿ (5)

This metric is analogous to combining grouped tasks into single
super-tasks, and as a result all tasks ∈g Gi will be scored equivalently
by r .i

g Relative scoring to break these ties between in-group tasks can be
measured with ri. Fig. 6 shows the growth of responsibility sets from
task groupings.

4.1.2. Extension: resource constraints
Recall that Fi is the set of fixed resources required by task i and K| | is

the number of stations available. Let Fk
l be the set of resources available

at station k in PZ l. Eq. (6) is an urgency score that measures the relative
importance of fixed resource res by the last station to possess res. For
example, if there are 17 stations and a resource last appears on station
15, then that resource has =Z 2res .

= − ∀ ∈Z K max k l res F| | { | , }res k
l (6)

Given two fixed resources res1 and res2, if the station number of the
final appearance of res1 is less than the final appearance of res2 then res1
will have a higher urgency score, reflecting the fact that tasks that re-
quire res1 have fewer opportunities to assign their predecessors during a
first fit decreasing heuristic. To impose prioritization of these pre-
decessors each task i inherits the maximum Zres from their responsibility
set Q ̿ ,i as shown in (7).

= ∀ ∈ ⋃
∈

={ }r max Z res res F:i
r

res j Q j
i

(7)

4.1.3. MRPW algorithm
The MRPW algorithm applies the metrics from (1), (5), and (7) to

prioritize tasks according to task grouping, resource, and precedence
constraints. These metrics are combined in a hierarchy such that ri

r

dominates, followed by r ,i
g then ri (Fig. 7).

4.1.4. MRPW remarks
The algorithm calculates ri, ri

g, and ri
r for each task i, by application

of (1-(7. In lines 10 and 11 of the MRPW algorithm, the set of unas-
signed tasks is sorted, first filtering tasks by maximum ri

r . Ties are
broken first by the largest ri

g, then the largest ri, and then arbitrarily
from the candidates. Next, all tasks that are linked to task i via ad-
jacency, same-takt, or same-station constraints are assigned to a group
which will all be assigned to the same WZ or station as appropriate.

Lines 14 and 15 describe finding the station at which to begin the
search, by considering precedence. On line 17, three conditions are
considered for assigning task i. First, if there is a task j at this station
with the same PZ as task i, then the only WZ at this station to which task
i can be assigned is the same WZ to which j is assigned. The second
condition checks whether the WZ that contains j has sufficient capacity
to add task i. The third condition checks whether the resource needs of
task i are met at this location. If all of these conditions hold then task i is
assigned to this station and WZ.

Lines 20–23 consider all WZ at this station that are not empty
(possess at least one task). The motivation here is to attempt to add task
i to an existing WZ if possible, rather than open a new WZ. If there exists
an already open WZ that can hold task i’s PZ, and that WZ has sufficient
time capacity, and the resource needs of task i are met at this location,
then assign task i to that WZ.

The logic on line 25 considers relaxing the restriction that the WZ be
non-empty. If the count of WZ with tasks assigned has not yet hit the
sk

max limit at this station, then perhaps a new WZ can be opened to hold
task i. The time capacity and resource satisfaction assignment condi-
tions must be met here.

Line 30 increments to the next station, as a feasible assignment at
the current station was not found. Line 31 checks whether the new
station index exceeds the number of stations given as input. If so, then
the new station under consideration will not have any information re-
garding resource availability. This is considered a failure mode, as the
task will be assigned to a station beyond the bounds of the given input
data. All known resources are given to the new (dummy) station to
ensure that task i can be assigned.

4.2. Last-Fit-Increasing improvement heuristic

The Last-Fit-Increasing (LFI) improvement heuristic is a one-at-a-
time task reassignment method that seeks to consolidate tasks from
lightly loaded workers. It intends to improve the FFD solution by
moving tasks to as late in the assembly line as possible without

Fig. 5. Overlapping Task Groups.

Fig. 6. Group Definition of Responsibility Sets.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

185

disrupting the current allocation of tasks, hopefully resulting in at least
one empty WZ. Fig. 8 presents an algorithmic view of this logic. LFI
begins with a feasible ALB solution, and utilizes the MRPW task metrics
ri, ri

g, and ri
r . In contrast to FFD, however, LFI in lines 8 and 9 considers

all tasks in increasing order of priority, first selecting the lowest-priority,
last-assigned task during MRPW. The small priority score for this task
indicates that it is maximally free for assignment anywhere on the

assembly line, relative to other tasks, as constraints have not inflated its
MRPW metric. This task is a good candidate for pushing as far to the
end of the line as possible, so that it might be far out of the way of other
tasks with more demanding constraints. The task is moved to the last
already-active worker that can feasibly accept it (new workers may not
be activated during LFI). Iteration then continues to the task with the
next-lowest MRPW priority.

Fig. 7. MRPW Algorithm.

Fig. 8. Last Fit Increasing Improvement Heuristic.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

186

Consider all the stations in which successors of tasks in Gi are as-
signed. In line 12 the initial station to begin the search, k, is chosen to
be the earliest of those stations. This is the farthest that group Gi might
go toward the end of the line, due to precedence. Whichever successor
task is found during this search has already moved previously in the
course of the LFI, as it has a lower MRPW score. Station k is examined to
determine if active workers can feasibly absorb group Gi. If so, the tasks
are assigned and the loop proceeds to the next task group. If not, then
the previous station will be considered. If no later station is found to
which group Gi can move, then the group will simply be reassigned at
their originally assigned station.

4.3. Work zone blocking improvement heuristic

Solutions to the gALB problem specified in Section 3 typically ac-
tivate only a fraction of the WZs available. Solving the problem may be
considered in two sequential stages: first, to choose which WZ are ac-
tivated, then to assign tasks to them. In the spirit of leveraging ag-
gregate task PZ to WZ compatibility patterns, two metrics are in-
troduced that provide insight into the relative quality of activating each
WZ.

4.3.1. Work zone metrics
Let Compi b k, , be an indicator variable on whether task i is compatible

with WZ b at station k, based on the following constraints:

1 Fixed resources. If task i requires any fixed resources, then the TZ at
WZ’s station must provide them.

2 Accessibility. This checks both WZ and PZ accessibility. The PZ of
task i must not be blocked at this station, nor may WZ b itself be
blocked.

3 Zone overlap. The PZ of task i must be associated with WZ b for
possible assignment, as per the mapping provided in Fig. 1.

Moreover, these conditions must be met for all tasks that are
grouped with task i via adjacency, same-takt, or same-station linkages,
not just for task i itself.

The first WZ metric is a “uniqueness” score, given in (8). The in-
ternal term ∑ ∈ ≠′ ′ ′Compb W b b i b k, , , counts how many other WZ are com-
patible with a given task i. This quantity is divided by the total number
of other WZ on all stations combined, × −W K W| | | | | |, and subtracted
from 1, yielding the fraction of non-compatible WZs for task i. This
value is then maximized over the set of all i, subject to i being com-
patible with WZ b at station k. The final value delivered, Uniquenessb m, ,

is a measure of the maximum degree to which WZ b at station k is
needed by any task, normalized on the [0,1] scale. A measure of 0
uniqueness indicates that WZ b at station k is not particularly important
to any task, as any task that is compatible with m b is also compatible
with every other WZ. On the other hand, a measure of 1 uniqueness
indicates that there exists some task for which WZ b at station k is the
only possible assignment.

= −
∑

× −
=∈

∈ ≠Uniqueness Max
Comp

W K W
Comp{1

| | | | | |
| 1}b k i I

b W b b i b k
i b k,

, , ,
, ,

' '

(8)

The second WZ metric is the “flexibility” score, given in (9).
Flexibilityb k, is the proportion of tasks that may be assigned at WZ b at
station k. A measure of 1 flexibility indicates that the WZ is compatible
with every task. Zero flexibility indicates that the WZ is compatible
with no tasks.

=
∑ ∈Flexibility

Comp
nb k

i I i b k
,

, ,
(9)

Both the flexibility and uniqueness metrics provide insight into the
relative usefulness and importance of each WZ. Both metrics are nor-
malized to the scale [0,1]. To support the WZBlock heuristic, the two
metrics are added together to create a single composite score for each
WZ:

= +Scoreb k Uniqueness Flexibility, b k b k, , (10)

4.3.2. WZBlock heuristic algorithm
The WZBlock algorithm proceeds by iteratively blocking work zones

from usage, by simulating accessibility constraints additional to any
that may be in the original problem data. The approach aspires to
identify and forbid the WZs that, if chosen for activation, are most likely
to cause infeasibilities or sub-optimality in the objective function. The
sum of the flexibility and uniqueness metrics presented in Section 4.3.1
is used to discriminate between WZs. The algorithm shown in Fig. 9
details the procedure.

The variable LBbest retains the best solution found through the
course of the algorithm. During each iteration, WZ b at station k with
the smallest positive +Flexibility Uniqueness score is chosen, and WZ k
is blocked (=s 0kb

W). For redundancy purposes, composite scores of zero
are not targeted, as a zero flexibility implies that no task can be as-
signed to the WZ regardless. The MRPW heuristic is then applied with
the targeted WZ blocked from activation, followed by the LFI_Improve
heuristic. The forthcoming solution retained if it is an improvement

Fig. 9. Work Zone Blocking Heuristic.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

187

upon the best-yet-found solution, whereupon the WZBlock algorithm
considers the WZ to block for the next iteration. Looping continues until
the iteration count exceeds a user-defined maxIter hyper-parameter, or
no WZs are identified for potential blockage.

Heuristic solutions might not be feasible. Infeasible solutions con-
tain “dummy” stations with tasks that could not otherwise be assigned
to any station. The “update LBbest” command checks whether candi-
date LBtest is superior to the incumbent LBbest. Feasible solutions are
preferred over infeasible ones, using utilization (efficiency) as a metric
of goodness. Table 4 presents the four possible scenarios, and corre-
sponding action.

4.4. MRPW-LFI-WZBlock Heuristic

The heuristic proposed includes the three elements previously de-
scribed and is refered to as the MRPW-LFI-WZBlock Heuristic. WZBlock
is used as the outer wrapper heuristic, with maximum iteration hyper-
parameter set to 10. Within each iteration, the MRPW constructive
heuristic is executed, followed by the LFI improvement heuristic.

The computational complexity of each iteration of the WZBlock
heuristic is O(n K| |), where n is the number of tasks and K| | is the
number of stations. The computational complexity is O(n2 K| |) for the
MRPW and LFI heuristics.

5. Integer programming model

In this section an integer programming (IP) formulation is presented
that models the gALB problem introduced in Section 3. Notation for the
sets and input parameters are shown in Section 3.4. As discussed in
Appendix B in Supplementary material: IP Preprocessing, many of these
input parameters are preprocessed before execution of the IP. Outputs
from the preprocessing routine are shown in Table 5. Section 5.1 pre-
sents the IP formulation in three parts: decision variables, objective
function, and constraints.

5.1. IP formulation

5.1.1. Decision variables

= ⎧
⎨⎩

x if task i is assigned to station k and WZ b
else

1
0ikb

= ⎧
⎨⎩

y if WZ b at station k is active
else

1
0kb

5.1.2. Objective
The objective function, z, minimizes the number of workers, as

measured by the count of active WZ, modifying the classic objective to
conflate WZ (instead of stations) with workers.

∑ ∑=
∈ ∈

minimize z y
k K b W

kb

5.1.3. Constraints
Table 6 presents formulas for all constraints in the IP. The ID

column is referenced in subsequent text to provide description for the
mechanics of each constraint.Constraint set (C1) enforces each task to
be assigned to exactly one worker. Constraint set (C2) ensures the
average workload assigned to each active worker cannot exceed the
cycle time. Constraint set (C3) ensures no more than sk

max workers may
be active at station k. Constraint set (C4) enforces precedence con-
straints. Constraint set (C5) enforces adjacency and same-takt con-
straints. Constraint set (C7) enforces same-station constraints. Con-
straint set (C8) enforces not-same-takt constraints; this is a clique
inequality, enforced only for cliques defined by each not-same-takt
group. Constraint set (C9) enforces fixed resource constraints. Con-
straint set (C10) enforces WZ accessibility constraints. Constraint set
(C11) enforces PZ accessibility constraints. Constraint set (C12) en-
forces zoning compatibility. Tasks may only be assigned a WZ at some
station if the PZ of the task is compatible with that WZ. See Appendix B
in Supplementary material: IP Preprocessing for derivation of the B
parameter. Constraint set (C13) enforces zone overlap constraints; this
constraint considers all task pairs i and j that share the same PZ, in-
dicated by the preprocessing parameter =w 1ij . If i and j are assigned to
the same station, and task i is assigned to WZ b, then task j must also be
assigned to WZ b. This is accomplished by restricting j from assignment
to any other WZ that is not b. This constraint prevents workers from
interfering with one another. Without this constraint it would be pos-
sible for two workers to simultaneously attempt tasks within the same
PZ. Constraint sets (C14) and (C15) ensure all decision variables are
binary.

6. Application of solution methodologies

This section describes a computational experiment for the MRPW-
LFI-WZBlock Heuristic and the IP formulation. For the IP, performance
criteria of interest relate to the computer time requirements necessary
to solve the problem, and the scaling of this time as a function of
problem size. The primary criteria of interest for the heuristic method is
the quality of the solution, as measured by optimality gap.

6.1. Test data sets

The ALB literature provides no testbed data sets that exhibit all
constraints desired for this paper. Three sets of test data were collected
during the development of these methods, in conjunction with our in-
dustrial partner. The three data sets corresponding to assembly line
sections are labeled “Band 1”, “Band 26”, and” Band 30.” Table 7
summarizes some properties of each of these initial data sets.

These three initial data sets form the testbed basis of the experi-
ment. In addition, an array of ALB sub-problems are created from the

Table 4
Criteria for Retention of Incumbent Solution.

LBtest LBbest ACTION

FEASIBLE FEASIBLE Retain higher utilization
FEASIBLE INFEASIBLE Retain LBtest
INFEASIBLE FEASIBLE Retain LBbest
INFEASIBLE INFEASIBLE Retain fewest dummy stations. If tied, retain higher

utilization

Table 5
Input Parameters Derived During Preprocessing.

Symbol Description

Qklf
c Fixed Resource Coverage:

=Q k f l1 if station has fixed resource that can be used in PZklf
c

Bkbl − =B b l kWZ PZ compatability: 1 if WZ can contain PZ at stationkbl ; 0 else
wij = =i j w if l lIndicates that tasks and have the same product zone. 1 ; 0 elseij i j

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

188

initial data sets using the tasks assigned in a provided feasible solution,
from every possible partition of three or more adjacent stations. This
resulted in 125 datasets with between 58 and 395 total tasks over three
to 13 stations. Data sets are available from the authors upon request.

6.2. Experiment execution

The IP was applied to each data instance and executed on the Linux-
based Palmetto Cluster at Clemson University. The IP formulation is
modeled in AMPL, and run using the Gurobi 5.0 Linux 64 solver. For
each problem instance 8 processors and 120gb of RAM are allocated.

MRPW-LFI-WZBlock is applied to each data instance with the hyper-
parameter set to 10. This setting is chosen because offline testing has
shown limited improvement in objective function for values beyond 10.
MRPW-LFI-WZBlock is implemented in VBA, and executed on a 64-bit
Windows PC with 2.40 GHz processor and 2GB RAM. The experimental
data is summarized in Table 7.

6.2.1. Heuristic feasibility
Some instances of the data were not amenable to solution with

MRPW-LFI-WZBlock, and entered into the aforementioned “failure
mode”. The instances that did not result in solution from MRPW-LFI-
WZBlock are included in Table 8, with a separate row, italicized font,
and an average gap of ∞. MRPW-LFI-WZBlock found feasible solutions
for 106 out of 125 problem instances. Of the 19 heuristic-infeasible
instances, 17 of them are sourced in Band 26 data, and 2 are from Band
1.

6.2.2. IP runtime
The average time to execute the IP model was 3.21 s, aggregated

across all datasets; the IP model successfully solved all 125 instances.
The maximum time is under 25 s. It is remarkable to have solved a 400-
task problem, easily a middle-sized problem by ALB standards, in only
20 s.

Fig. 10 presents AMPL Elapsed Time versus task and station counts,
with each band’s datasets collected separately. Fig. 10 shows particu-
larly strong differentiation between bands, and consistency within

bands. It appears that there are some characteristics particular to each
band which carry strong implications towards the IP runtime.

6.2.3. MRPW-LFI-WZBlock optimality gap and time
The optimality gap for instance i is measured by = −Gapi

z z
z

i opt i

opt i

,

,
,

where zopt i, is the optimal value of the objective function, as determined
by the IP solution, and zi is the value of the objective function found by
the heuristic. If the heuristic finds an optimal solution, then the gap is
zero. The heuristic found 31 optimal solutions of 125, or approximately
25% of problem instances. Of the 31 optimal instances, 29 were from
Band 30, two were from band 1 and none were from Band 26. The

Table 6
IP Constraints.

Constraint Formula Quantification and Condition Set

∑ ∑ =∈ ∈ x 1k K b W ikb ∀ ∈i I C1

∑ ≤∈ t x Cyi i ikb kbI ∀ ∈ ∈k K b W, C2

∑ ≤∈ y sb W kb k
max ∀ ∈k K C3

∑ ∑ ≤ − ∑ ∑= + ∈ = ∈x x1k v
K

b W jkb k
v

b W ikb1
| |

1
∀ = … − =v K p1 | | 1, if 1ij C4

=x xikb jkb ∀ ∈ ∈ ∈ = =i j I k K b W a a, , , , if 1 or 1ij
adj

ij
st C5

∑ = ∑∈ ∈x xb W ikb b W jkb ∀ ∈ ∈ =i j I k K a, , , if 1ij
ss C7

+ ≤x x 1ikb jkb ∀ ∈ ∈ =k K b W i j a, , for and where 1ij
nt C8

∑ ≤∈Q x Q()if
u

b W ikb k li f
c
, , ∀ ∈ ∈ ∈i I k K f F, , C9

=x 0ikb ∀ ∈ ∈ ∈ =i I k K b W s, , , if 0kb
W C10

∑ =∈ x 0b W ikb ∀ ∈ ∈i I k K, , =sif 0kb
P C11

=x 0ikb ∀ ∈ ∈ ∈ =i I k K b W B, , , if 0kbli C12

+ ∑ ≤′∈ ′x x 1ikb b W b jkb\ ∀ ∈ ∈ ∈ =i j I k K b W w, , , , if 1ij C13

x ε {0,1}ikb ∀ ∈ ∈ ∈i I k K b W, , C14
y ε {0,1}kb ∈ ∈k K b W, C15

Table 7
Test Data Set Properties.

Data Set # Stations # Tasks # Unique FIXED RESOURCES

Band 1 13 396 12
BAND 26 9 317 12
Band 30 10 300 3

Table 8
Summary Results (Feasible and Infeasible for MRPW-LFI-WZBlock).

Band Number of
Stations

Number of
Instances

Average AMPL
Elapsed Time
(s)

MRPW-LFI-WZBlock

Average
Time (s)

Average gap

1 3 11 0.16 24.00 0.30
4 9 0.32 30.90 0.28
4 1 0.09 24.43 ∞
5 8 0.65 13.74 0.22
5 1 0.21 28.37 ∞
6 8 1.07 7.70 0.26
7 7 3.68 57.33 0.28
8 6 5.37 59.55 0.28
9 5 7.54 60.81 0.23
10 4 9.67 60.75 0.38
11 3 11.75 60.19 0.44
12 2 15.85 48.49 0.56
13 1 20.44 60.16 0.53

26 3 3 0.21 26.27 0.33
3 2 0.23 29.47 ∞
4 2 0.54 30.59 0.48
4 2 0.38 30.44 ∞
5 1 1.53 10.44 0.57
5 3 0.77 1.66 ∞
6 4 1.23 9.21 ∞
7 3 1.99 60.37 ∞
8 2 3.18 10.36 ∞
9 1 6.30 52.63 ∞

30 3 8 0.32 1.60 0.00
4 7 0.87 11.82 0.00
5 6 1.88 19.04 0.00
6 5 3.35 31.47 0.00
7 4 5.02 42.15 0.04
8 3 9.24 48.40 0.14
9 2 12.47 54.72 0.13
10 1 20.62 60.39 0.13

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

189

average gap in the cases in which the optimal solution is not found is
0.204, and in the worst instance is 0.62.

The average time to execute MRPW-LFI-WZBlock is 31.9 s. While
this is difficult to compare with the IP running time, due to the plat-
forms on which each is executed, the 10-fold increase is notable.

6.3. Discussion

The runtime plots of the IP suggest accelerating growth in runtime
with respect to the size of the problem. Indeed, ALBs are NP-hard, and
extremely large problems will certainly be intractable. The instances
solved here span up to 400 tasks and 13 stations, what might be con-
sidered mid-sized problems in ALB, with runtimes under one minute.

Each band represents an independent production process, with
several key differences that might help illuminate band-specific differ-
entiation in performance. All tasks in Band 1 belong to one of the four
corner PZs: {LV, RV, LH, RH}, and in most stations workers may only be
assigned to the L or R work zones. Only two stations support three
parallel workers (the rest cannot have more than two), limiting the
potential for overlapping work zones. There are many fixed resources in
Band 1, but for most tasks that require fixed resources there is only one
WZ which can satisfy both fixed resource and zoning needs, simplifying
the decision problem by forcing task assignment. Band 26 is relatively
complex, with the full complement of up to 5 parallel workers per-
mitted at many stations. Tasks are located in every PZ. Fixed resources
are common, though many are duplicated across two or more stations,
permitting tasks requiring fixed resources to be assigned in one of
several WZs. Band 30 is a single-sided assembly line, with only one
worker permitted per station. Every task is located in the same PZ, and
fixed resources are sparse on the line. Task grouping is relatively
common in Band 30, but otherwise this band is easily the simplest of
the three with respect to constraint complexity.

Fig. 10 shows Band 30 instances requiring the most IP time to solve,
Band 26 the least, and Band 1 in the middle. For any given problem size
(in terms of either task or station count), Band 30 instances required
approximately 4x runtime relative to Band 26 instances, and approxi-
mately 2x runtime relative to Band 1 instances. It appears that addi-
tional constraints lower IP runtime in general, as a highly constrained
instance has a smaller feasible region within the solution space.

7. Summary and conclusions

The MRPW-LFI-WZBlock Heuristic heuristic incorporates three
methods. The first, MRPW, introduces a prioritization scheme driven by

measuring constraint satisfaction scarcity. Responsibility sets are in-
troduced to encapsulate task-to-task precedence and assignment
linkage constraints. Urgency score is introduced to measure assignment
limitations due to resource constraints. Tasks are weighted by a com-
posite prioritization score based on these new metrics, and assigned
according to a first-fit-decreasing single-pass heuristic. The MRPW
heuristic is oriented toward creation of feasible solutions, with effi-
ciency being a secondary consideration. The second component, the
Last Fit Increasing improvement heuristic leverages the task prior-
itization rankings of MRPW, and consolidates flexible tasks into
otherwise lightly-packed workers. The goal of the LFI improvement
heuristic is to improve the efficiency of a feasible solution. The Work
Zone Blocking heuristic focuses on the first work zone selection sub-
problem of the bifurcated ALB problem. The purpose of this approach is
to address zoning difficulties encountered in the MRPW heuristic. Two
new metrics are introduced to support the heuristic, measuring work
zone flexibility and uniqueness. The metrics are developed in con-
sideration of each WZ’s offerings in terms of satisfying task needs with
respect to zoning, fixed resource, and accessibility constraints.

An IP is developed to manage the zoning and worker parallelization
aspects of the problem. Preprocessing transformations render several
complex facets of the problem into representations amenable for a tight
IP formulation.

Each solution methodology is applied to a testbed of 125 instances
derived from real ALB data collected in conjunction with our industrial
partner. The IP is benchmarked primarily according to the runtime
required relative to the size of the instance, to which it performs sur-
prisingly well, needing only 22 s at most to solve an instance. The IP
solution is also used to benchmark heuristic performance. The heur-
istics were able to find feasible solutions for 83.2% of problem in-
stances. The heuristics averaged an optimality gap of approximately
20%, and found the optimal solution for 25% of the instances. Due to
superior performance and adaptability, the IP is recommended for in-
dustrial application.

7.1. Implications for future work and industry implementation

A manufacturer with operations encapsulated by the gALB char-
acteristics for this problem can implement these methods. The algo-
rithmic approach is suitable for embedding within a commercial line
balancing visualization software tool. Direct use cases include support
for initial (product launch) line balancing, and periodic rebalancing to
respond to forecasted demand changes. Secondary use cases include
exploration of input parameter variation, e.g. cycle time changes, or

Fig. 10. AMPL Elapsed Time by Band and Task, Station Count.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

190

relocation of fixed equipment.
Industry application of ALB methods commonly encounter diffi-

culties in extending existing methods to account for gALB features
specific to the problem environment. For the gALB environment con-
sidered by the methods here, no existing ALB methods were suitable for
immediate application, largely due to the unique zoning features.
During the course of this research, the heuristic methods were created
first, and the IP formulation later. More than a year was spent working
with our industry partner, both to collect data and to understand the
various constraints that appear in the problem. Some constraint types,
e.g. not-same-takt constraints, are especially rare on the assembly lines
under study, and were not discovered until late in the process. The ALB
methods detailed in this work are certainly extensible for application to
problem domains outside our industrial partner’s, for which the
methods were specifically designed. Issues related to industrial appli-
cation of the IP and heuristic methods are discussed separately in
Sections 7.1.1 and 7.1.2, respectively.

7.1.1. IP formulation result
The IP performed exceptionally well for all problem instances in the

experiment. Assuming availability of a solver such as Gurobi, it is the
recommended solution to any industry customer with an applicable and
comparably-sized ALB problem. It is difficult to speculate on IP runtime
performance for problems larger than in the experiment, as runtime will
certainly experience combinatorial growth rates at some size. Perhaps
problems up to an order of magnitude of the largest instances in this
experiment (similar in size to the largest ALB problems considered in
any literature) would still find acceptable runtimes.

The IP is particularly well-suited for constraint extensions that in-
volve task-to-task or task-to-station assignment compulsion or for-
biddance. Several constraints of this variety already exist within the
current gALB problem, implemented with relatively clear, direct, and
tight IP constraints. Presumably, extending the IP for another gALB
environment by adding more constraints of this type would be rela-
tively simple. Indeed, during development of this IP the not-same-takt
constraints were added late in the timeline, but were easily modeled in
the IP structure. The not-same-takt task sets in this project were limited
to sets of two tasks, and as such, the provided constraint C8 is sufficient.
However, if a not-same-takt task set contained more than two tasks, this
constraint set can be expanded to take advantage of the clique structure
as follows. Let Ω̄ be the set of all not-same-takt sets, each of which is
labeled ∈ …oΩ , {1, , |Ω̄|}o . None of the tasks ∈i Ωo can be assigned to
the same takt, so the following constraint set C8’ can be utilized:

∑ ≤ ∀ ∈ ∈ ∈ …∈ x k Κ b W o1 , , for {1, , |Ω̄|} C8’i ν ikbΩo

The IP features three distinct zone types: work zones, product zones,
and fixed resource coverage zones. The implementation details of these
zones, such as their mapping relationships, are easily customizable. It is
possible to add, remove, or re-map any of the zoning features with
reasonable effort. Such changes would require no alteration of the IP
formulation itself, only redefinition of the preprocessing parameters, in
which zone relationships are encapsulated.

Implementing task sequencing constraints would require adding
new decision variables to the IP to ensure that task start/stop times are
properly managed. Adding these variables and associated sequencing
constraints to the IP is relatively direct in terms of formulation, but
might present significant consequences in terms of runtime. Adding
decision variables might always be expected to add runtime, but in
particular start/stop time variables are quantified over the real num-
bers. All other variables currently in the IP are binary, significantly
restricting the size of the solution space. Timing variables changes the
IP from a BIP to a MILP, and runtime penalties should be expected.

Problem extensions that permit the IP to touch on related produc-
tion planning problems would necessitate large-scale adaptations to the
IP. Examples include extensions to accommodate job sequencing, part

logistics, or facility design. The IP does not consider task sequencing, so
an infeasibility of this kind may be present in the solution produced by
the IP. Through post-processing review, the data sets used did not result
in any violations. It is possible to extend the IP to manage task se-
quencing, and thereby prevent such infeasibilities, but at the cost of
introducing a new set of decision variables related to sequencing.

7.1.2. Heuristics
Relative to the IP, the heuristic methods are ill-suited for extensions

that add constraints or other gALB features. The first ancestral version
of the MRPW heuristic was developed early in the research project,
before discovering many of the constraints now represented. Since that
time, each constraint added has induced excessive difficulty when
adapting the MRPW method

Further, the experiment has shown significant performance pro-
blems for the heuristics, in terms of finding feasible solutions and in the
quality of those solutions. MRPW-LFI-WZBlock is possibly useful in a
few cases. The first is the case of extraordinarily large problem size. The
runtime of heuristics scales in a polynomial fashion with respect to
problem size and will experience a slower growth rate than the IP. The
second scenario for application of heuristic methods is if resources for
solving IPs are unavailable.

Acknowledgment

Funding for this research was provided by BMW Manufacturing Co.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jmsy.2018.12.011.

References

[1] Scholl A. Balancing and sequencing assembly lines. 2nd ed. Heidelberg: Physica-
Verlag.; 1999.

[2] Salveson M. The assembly line balancing problem. J Ind Eng 1955;6(3):18–25.
[3] Wee T, Magazine M. Assembly line balancing as generalized bin packing. Oper Res

Lett 1982;1(2):56–9.
[4] Chase R. Survey of paced assembly lines. Ind Eng 1974;6(2):14–8.
[5] Schöniger J, Spingler J. Planung der Montageanlage. Technica 1989;14:27–32.
[6] Milas G. Assembly line balancing… let’s remove the mystery. Ind Eng

1990;22:31–6.
[7] Erel E, Sarin S. A survey of the assembly line balancing procedures. Prod Plan

Control 1998;9(5):414–34.
[8] Boysen N, Fliedner M, Scholl A. Production planning of mixed-model assembly

lines: overview and extensions. Prod Plann Control: Manage Oper
2009;20(5):455–71.

[9] Townsend B. The basics of line balancing and JIT kitting. Boca Raton, FL: Taylor &
Francis Group; 2012.

[10] Baybars I. A survey of exact algorithms for the simple assembly line balancing
problem. Manage Sci 1986;32:909–32.

[11] Baybars I. An efficient heuristic method for the simple assembly line balancing
problem. Int J Prod Res 1986;24:149–66.

[12] Becker C, Scholl A. A survey on problems and methods in generalized assembly line
balancing. Eur J Oper Res 2006;183:694–715.

[13] Johnson R. A branch and bound algorithm for assembly line balancing problems
with formulation irregularities. Manage Sci 1983;29:1309–24.

[14] Bautista J, Suarex R, Mateo M, Companys R. Local search heuristics for the as-
sembly line balancing problem with incompatibilities between tasks. Proceedings of
the 2000 IEEE international conference on robotics and automation 2000:2404–9.

[15] Carnahan B, Norman B, Redfern M. Incorporating physical demand criteria into
assembly line balancing. Iie Trans 2001;33:875–87.

[16] Bartholdi J. Balancing two-sided assembly lines: a case study. Int J Prod Res
1993;31:2447–61.

[17] Lee T, Kim Y, Kim Y. Two-sided assembly line balancing to maximize work relat-
edness and slackness. Comput Ind Eng 2001;40:273–92.

[18] Kim Y, Kim J, Kim Y. Two-sided assembly line balancing: a genetic algorithm ap-
proach. Prod Plan Control 2000;11:44–53.

[19] Lapierre SD, Ruiz AD. Balancing assembly lines: an industrial case study. J Oper Res
Soc 2004;55:589–97.

[20] Baykasoglu A, Dereli T. Two-sided assembly line balancing using ant-colony-based
heuristic. Int J Adv Manuf Technol 2008;36(5-6):582–8.

[21] Simaria A, Vilarinho P. 2-ANTBAL: an ant colony optimization algorithm for bal-
ancing two-sided assembly lines. Comput Ind Eng 2009;56:489–506.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

191

https://doi.org/10.1016/j.jmsy.2018.12.011
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0005
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0005
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0010
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0015
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0015
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0020
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0025
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0030
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0030
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0035
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0035
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0040
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0040
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0040
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0045
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0045
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0050
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0050
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0055
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0055
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0060
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0060
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0065
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0065
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0070
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0070
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0070
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0075
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0075
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0080
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0080
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0085
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0085
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0090
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0090
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0095
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0095
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0100
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0100
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0105
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0105

[22] Chutima P, Chimklai P. Multi-objective two-sided mixed-model assembly line bal-
ancing using particle swarm optimization with negative knowledge. Comput Ind
Eng 2012;62:39–55.

[23] Pastor R, Corominas A. Assembly line balancing with incompatibilities and bounded
workstations. Ricerca Operativa 2000;30:23–45.

[24] Helgeson W, Birnie D. Assembly line balancing using the ranked positional weight
technique. J Ind Eng 1961;12:394–8.

[25] Agrawal P. The related activity concept in assembly line balancing. Int J Prod Res
1985;23:403–21.

[26] Tonge F. Summary of a heuristic line balancing procedure. Manage Sci
1960;7:21–42.

[27] Tonge F. A heuristic program for assembly line balancing. New Jersey: Prentice-
Hall; 1961.

[28] Pinto P, Dannenbring D, Khumawala B. A heuristic network procedure for the as-
sembly line balancing problem. Naval Res Logist Rev 1978;25:299–307.

[29] Tonge F. Assembly line balancing using probabilistic combinations of heuristics.
Manage Sci 1965;11:727–35.

[30] Arcus A. COMSOAL: a computer method of sequencing operations for assembly
lines. Int J Prod Res 1966;4:259–77.

[31] Boysen N, Fliedner M, Scholl A. A classification of assembly line balancing pro-
blems. Eur J Oper Res 2007;183:674–93.

Bryan W. Pearce, Ph.D., is a technical process engineering at First Quality. He earned his
BS, MS and PhD in Industrial Engineering from Clemson University. His interests are in
optimization and risk management for capital project planning and production planning
applications.”

Kavit Antani, Ph.D. is an assembly quality manager at the BMW Manufacturing plant in
Spartanburg, SC responsible for X3, X4, X5, X6 and X7 sports activity vehicles. He earned
his BS in Production Engineering from University of Mumbai, India, his MS in Industrial
and Systems Engineering from Auburn University and his Ph.D. in Automotive
Engineering from Clemson University. His research interests are in automotive assembly,
manufacturing complexity and its effects on product quality, and powertrain engineering.
He is an active member of SME, SAE and ASQ.

Laine Mears, Ph.D., P.E. is the SmartState Endowed Chair of Automotive Manufacturing
at Clemson University. He earned a BS in mechanical engineering from Virginia Tech and
MS and Ph.D. degrees in mechanical engineering from Georgia Tech. He is a Fellow of
both the American Society of Mechanical Engineers and SME, and associate editor of the
ASME Journal of Manufacturing Science and Engineering and the SME Journal of
Manufacturing Systems. His research in state estimation and control of manufacturing
equipment is sponsored by the National Science Foundation, Office of Naval Research and
numerous industrial partners.

Kilian Funk, Ph.D., is a senior software developer with the BMW Group. He earned his
diploma in mechanical engineering and his Ph.D. in technical mechanics from the
Technische Universität München (TUM). He spent many years with BMW research
working on driver assistance systems, mechatronic system design, assembly and pro-
duction planning methods. His is currently working in the field of autonomous driving.

Maris E. Mayorga, PhD is a Professor in the Fitts Department of Industrial and Systems
Engineering at North Carolina State University. She earned her BS in Mechanical
Engineering from The George Washington University and her MS and PhD degrees in
Industrial Engineering and Operations Research from the University of California,
Berkeley. She is a member of IISE and INFORMS. She is an associate editor for IISE
Transactions, OMEGA (the International Journal of Management Science), IISE Transactions
on Healthcare Systems Engineering, Systems Science and Service Science, and the INFORMS
Journal on Computing. Her research interests are modeling and optimization of complex
systems under uncertainty, including healthcare and logistics.

Mary E. Kurz, PhD is an associate professor in Industrial Engineering at Clemson
University. She earned her BS and MS in Systems Engineering and her PhD in Systems and
Industrial Engineering from the University of Arizona. She is a Senior Member of IISE and
a member of INFORMS and SME. She is a member of the editorial board for the Journal of
Manufacturing Systems. Her research interests are in optimization for assembly-related
tasks, using exact techniques, heuristics and metaheuristics.

B.W. Pearce et al. Journal of Manufacturing Systems 50 (2019) 180–192

192

http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0110
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0110
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0110
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0115
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0115
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0120
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0120
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0125
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0125
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0130
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0130
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0135
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0135
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0140
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0140
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0145
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0145
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0150
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0150
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0155
http://refhub.elsevier.com/S0278-6125(18)30463-1/sbref0155

	An effective integer program for a general assembly line balancing problem with parallel workers and additional assignment restrictions
	Introduction
	Related literature
	Problem environment and additional constraints
	Parallel workers and zoning constraints
	Task to task constraints
	Station constraints
	Notation convention

	Constructive and improvement heuristics
	Modified ranked positional weight heuristic
	Extension: grouping constraints
	Extension: resource constraints
	MRPW algorithm
	MRPW remarks

	Last-Fit-Increasing improvement heuristic
	Work zone blocking improvement heuristic
	Work zone metrics
	WZBlock heuristic algorithm

	MRPW-LFI-WZBlock Heuristic

	Integer programming model
	IP formulation
	Decision variables
	Objective
	Constraints

	Application of solution methodologies
	Test data sets
	Experiment execution
	Heuristic feasibility
	IP runtime
	MRPW-LFI-WZBlock optimality gap and time

	Discussion

	Summary and conclusions
	Implications for future work and industry implementation
	IP formulation result
	Heuristics

	Acknowledgment
	Supplementary data
	References

