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A paint manufacturing firm’s customers typically place orders for two or more products simultaneously. Each product
belongs to a family that denotes batching compatibility during manufacturing. Further, products can be split into several
sublots to allow overlapping production in a two-stage hybrid flow shop wherein various identical, capacitated machines
operate in parallel at each stage. We present a mixed-integer linear program (MILP) for this integrated batching and
lot streaming problem with variable sublots, incompatible job families, and sequence-dependent setup times. The model
determines the number and size of sublots for each product and the production sequencing for each sublot such that the
total weighted completion time is minimised. To promote practical implementation, we develop and evaluate heuristics to
efficiently solve this problem.

Keywords: Batch scheduling; lot streaming; sequence-dependent setups; incompatible product family; hybrid flow shop

1. Introduction

As manufacturing enterprises continue to endure market, environment, and energy usage pressures (Wang et al. 2019),
improving customer satisfaction, decreasing production cycle time, and reducing costs remain key factors for successful
businesses. Lot streaming has emerged as an attractive method for reducing makespan, cycle time, average work-in-process
inventory, required storage space, and material handling equipment requirements. Lot streaming splits a batch of jobs into
several sublots which can be processed in an overlapping fashion on successive stages in a multi-stage manufacturing
environment. Usually, lot streaming focuses on determining the number and size of sublots for a product and the assignment
and sequence of these sublots on machines to optimise performance criteria while satisfying required constraints.

Batching is another method used to handle production lots in scheduling. Batch scheduling focuses on finding capacity-
feasible schedules that optimise given objective function(s) while meeting required constraints. The intent of utilising
batching and lot streaming is to minimise time-related objectives such as makespan. However, batching and lot stream-
ing use different approaches. Batch scheduling requires grouping products to form a batch and then sequencing batches on
machines. Typically, batches cannot be split during manufacturing (Yin et al. 2016), resulting in increased machine utilisa-
tion, reduced setup times and lower completion times. Batch processing is typically used in semiconductor wafer fabrication
facilities (Shahvari and Logendran 2018; Mönch and Roob 2017). In lot streaming problems, batches are usually assumed
to be given (Mukherjee, Sarin, and Singh 2017; Zhang et al. 2017) and the decision is only when and how to split batches.
Sublots can be processed in an overlapping way on successive stages so that makespan/completion time can be minimised.
Lot streaming should only be used when the entire volume of a batch is greater than the machines’ capacity. Our work
focuses on this aspect of lot streaming.

This study is motivated by the first author’s work experience at a coating company. Customers place orders for one
of two product groups. One product group consists of primer and top coat paint; the other is composed of primer, top
coat paint, and undercoat paint. Any paint order can be divided into hundreds of subcategories, each associated with an
incompatible product family. Sequence-dependent setup times occur when production switches between product families.
Figure 1 describes the basic production steps required to manufacture each coating system component. Please see Olson and
Schniederjans (2000) and Adonyi et al. (2008) for more details about the paint industry. The manufacturing environment
is a two-stage hybrid flow shop (2-HFS), a flow shop with multiple stages where, in at least one stage, multiple parallel,
identical machines exist (Kurz and Askin 2004; Zandieh and Rashidi 2009; Rashidi, Jahandar, and Zandieh 2010). Each
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Figure 1. Paint production process.

Figure 2. Optimal solution of the example. (a) Integrated batching with lot streaming and (b) Lot streaming.

batch is processed by exactly one machine at each stage. If the demand for a product is larger than machine capacity, it must
be divided into several sublots. Each sublot is considered as a batch. If a sublot is smaller than machine capacity, sublots of
other products (belonging to the same product family) can be manufactured in this batch to up to machine capacity.

For example, consider three orders wherein each order contains one product. The demand (product family) of each
product is 2 (1), 3 (2), 5 (3). There is one machine (capacity of 4) in stage 1 and two machines (capacity of 2) in stage
2. Figure 2(a) shows the Gantt chart of the optimal solution for this example which allows batching and lot streaming
simultaneously. The total weighted completion time (TWCT) of all sublots is 84. Product 3 (product 2) is split into 2 (1)
sublots in stage 1, and 3 (2) sublots in stage 2. Since products 1 and 3 belong to the same product family, one sublot of product
1 and one sublot of product 3 are processed in the same batch position (2nd) on stage 1’s single machine simultaneously.
Sublot sizes vary across the two stages, given the relationship between product 3’s demand of 5 and the machine capacity in
each stage. When considering lot streaming alone (Figure 2(b)), the TWCT is 87, illustrating that scheduling using integrated
batching and lot streaming can improve upon using lot streaming alone.

In this study, a set of approaches is proposed for 2-HFS scheduling problems which consider batching and lot streaming
simultaneously. The main contributions of this paper are threefold:

(1) An MILP model that incorporates batching and lot streaming is proposed to determine sublot sizes and sequences
for multiple products in a 2-HFS to minimise total weighted completion time while satisfying customer demand.

(2) An effective lower bound (LB) is created to evaluate the performance of proposed algorithms.
(3) Heuristics are developed mixing three approaches to sequence products and three methods for splitting products.

Experimental analyses confirm the recommended heuristic’s ability to help companies make effective production
scheduling decisions.
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The rest of the paper is organised as follows. After the literature is reviewed in Section 2, detailed mathematical models
and a LB are presented in Section 3. Next, heuristics are presented in Section 4. Computational experiments are conducted
in Section 5, and conclusions are offered in Section 6.

2. Literature review

A recent review of lot streaming in the literature can be found in Cheng, Mukherjee, and Sarin (2013). The authers review
lot streaming problems for time-based and cost-based objective functions. Machine environments such as flow shops, par-
allel machines, hybrid flow shops, job shops, open shops, and two-stage assembly systems are discussed. Trietsch and
Baker (1993) provide basic models and algorithms for the lot streaming problem and complexity classifications for some
lot streaming problems.

Feldmann and Biskup (2008) categorize lot streaming problems according to machine configuration, product type, sublot
type, and other criteria. Equal sublots refer to the case wherein the size of all sublots is fixed and equal for all products.
Problems with consistent sublots allow each product to have its own sublot size that remains constant for all stages/processes.
Variable sublots cases contain no restrictions on sublot sizes across machines; sublot sizes may change when transferring
between machines.

Biskup and Feldmann (2006) conclude that variable sublots can lead to large improvements in makespan for flow
shops compared to other sublot types. The authors claim that they develop the first MILP formulation for lot streaming
with variable sublots in m-machine flow shops. Defersha and Chen (2010) extend this model to multiple products and
develop a hybrid genetic algorithm to improve computational efficiency. Defersha and Chen (2012) propose a parallel
genetic algorithm for the lot streaming problem in a hybrid flexible flow shop with sequence-dependent setup times, release
times for machines, and machine eligibility constraints. Pan et al. (2011) develop a discrete artificial bee colony algorithm
for the lot streaming flow shop scheduling problem to minimise total weighted earliness and tardiness. Multi-objective
lot streaming problems in blocking flow shops with interval processing time are studied by Han et al. (2016). Bożek and
Werner (2017) propose a two-stage optimisation procedure for a flexible job shop scheduling problem with lot streaming
and lot sizing of variable sublots. The makespan is minimised in the first stage and the sizes of sublots are maximised in the
second stage.

Potts and Kovalyov (2000) provide a detailed review on algorithms of batch scheduling problems. Erramilli and
Mason (2006) study a multiple orders per job batch single machine scheduling problem with compatible job families wherein
jobs that belong to any family may be grouped to form a production batch to minimise the total weighted tardiness. They
propose simulated annealing based-heuristics which are found to produce near-optimal solutions in seconds. Erramilli and
Mason (2008) consider the same problem with incompatible job families in which only jobs from the same family can be
batched together. Heuristic methods are developed to minimise total weighed tardiness. Batch scheduling with sequence-
independent and sequence-dependent setup times in flow shops are studied by Pranzo (2004) and Logendran, deSzoeke,
and Barnard (2006). Lin and Liao (2012) study a batch scheduling problem in a two-stage assembly shop to minimise the
weighted sum of makespan, total completion time, and total tardiness. A full batch family sorting heuristic combined with
rolling horizon scheduling strategy is developed for medium- and large-size problems to minimise total weighted makespan,
total completion time, and total tardiness. Real-life case studies show that their algorithm is much better than the current
method used by the studied company. Shi and You (2016) propose a two-stage adaptive robust optimisation approach for
batch scheduling problems under uncertainties such as processing time and order demand.

Few studies focus on developing schedules considering batching and lot streaming simultaneously, although they are
well studied in isolation. The main goal of this study is to fill this gap.

3. Model

3.1. Problem description

Consider a 2-HFS: m1 and m2 (m2 ≥ m1) identical parallel, capacitated machines are in stage 1 and 2, respectively. A set of
customer orders, consisting of products, of varying weights (priorities) is released at the beginning of the time horizon. Each
product can be divided into several variable size sublots. Multiple sublots, possibly from different products, can be processed
simultaneously on the same machine as a batch if they belong to the same product family and their total size does not exceed
the machine capacity. A sequence-dependent setup is required for changeovers at each machine. We seek to determine the
number and size of sublots for each product and the sequences for each sublot such that TWCT for product sublots is
minimised. Using the notation of Graham et al. (1979), this problem can be denoted by HF2| p-batch, incompatible, split,
sij|
∑

TWCT . A special case of the problem, HF2||∑ TWCT , is proven to be NP-hard (Tang, Xuan, and Liu 2006). Hence,
the more general problem in this paper is also NP-hard.
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3.2. Formulation

We formulate the integrated batching and lot streaming problem in a 2-HFS as an MILP. The notation used in the
mathematical model is defined as follows:

Sets
P Set of products; p = 1, 2, . . . |P|
S Set of flow shop stages; s = 1,2
Ws Set of machines in stage s; indexed by k, m = 1, 2, . . . |Ws|
B Set of batch positions; j, b = 0, 1, 2, . . . |B|. Subset Bm ⊆ B denotes the batch positions on machine m ∈ Ws

N Set of sublots; α = 1, 2, . . . |N |
F Set of product families; f , g = 0, 1, 2, . . . |F|
A maximum number of sublots |N | is given to any product p by a decision maker. |B| is the maximum number of batches

that any machine can process. Batch position 0 is a dummy batch position to which only dummy product family 0 can be
assigned.

Parameters
Ks Capacity of each identical machine in stage s
Dp Product p demand
M1, M2, M3 Large positive numbers
tfs Processing time of family f in stage s
wp Product p weight
ρpf = 1 if product p belongs to family f, 0 otherwise
τfg Setup time between families f and g

Variables
npαsmb Size of sublot α of product p in batch position b on machine m in stage s
Afsmb Starting time of batch position b (in family f ) on machine m in stage s
δfsmb Completion time of batch position b (in family f ) on machine m in stage s
Cpαsmb Completion time of sublot α of product p assigned to batch position b on machine m in stage s
upα 1 if sublot α of product p is produced, 0 otherwise
xpαsmb 1 if sublot α of product p is assigned to batch position b on machine m in stage s, 0 otherwise
yfsmb 1 if batch position b (processing family f ) on machine m in stage s is used, 0 otherwise
zpαkjmb 1 if sublot α of product p is assigned to batch position j on machine k in stage 1 and batch position b on

machine m in stage 2, 0 otherwise
βsm

fbg,b+1 1 if family g in batch position (b + 1) is processed immediately after family f in batch position b on
machine m stage s, 0 otherwise

The objective function, to minimise TWCT for product sublots, is given by:

min TWCT =
∑
p∈P

∑
α∈N

∑
m∈W2

∑
b∈Bm

wpCpα2mb. (1)

The schedule is anchored by a dummy batch position before the first batch on each machine, filled by the dummy family 0:

y0sm0 = 1 ∀ s ∈ S, m ∈ Ws. (2)

Batch positions are assigned consecutively with no empty batches interspersed:

y0sm0 −
∑
g∈F

ygsm1 ≥ 0 ∀ s ∈ S, m ∈ Ws, (3)

∑
f ∈F

yfsmb −
∑
g∈F

ygsm,b+1 ≥ 0 ∀ s ∈ S, m ∈ Ws, b ∈ B \ {|B|}. (4)

Any product sublot with family f cannot be assigned to a batch position if the family is not assigned to the same batch
position.

ρpf xpαsmb − yfsmb ≤ 0 ∀ p ∈ P, α ∈ N , f ∈ F, s ∈ S, m ∈ Ws, b ∈ B. (5)
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The assignment of family sequences between two consecutive batch positions is subject to:

yfsmb + ygsm,b+1 − βsm
fbg,b+1 ≤ 1 ∀ f ∈ F ∪ {0}, g ∈ F, s ∈ S, m ∈ Ws, b ∈ (B ∪ {0}) \ {|B|}. (6)

Every product sublot must be assigned to a position in stage 1:∑
k∈W1

∑
j∈B

xpα1kj = upα ∀ p ∈ P, α ∈ N . (7)

Every sublot produced in stage 1 must be assigned to a position in stage 2:∑
m∈W2

∑
b∈B

xpα2mb ≥
∑
k∈W1

∑
j∈B

xpα1kj − M2(1 − upα) ∀ p ∈ P, α ∈ N , (8)

∑
m∈W2

∑
b∈B

xpα2mb ≤
∑
k∈W1

∑
j∈B

xpα1kj + M2upα ∀ p ∈ P, α ∈ N . (9)

Batch positions across two stages for a sublot are connected by:

xpα1kj + xpα2mb − zpαkjmb ≤ 1 ∀ p ∈ P, α ∈ N , k ∈ W1, m ∈ W2. (10)

The production size of unused batch positions is equal to 0:

npαsmb ≤ M1xpαsmb ∀ p ∈ P, α ∈ N , s ∈ S, m ∈ Ws, b ∈ B. (11)

Batched quantities are bounded by 0 and the machine’s capacity Ks:∑
p∈P

∑
α∈N

npαsmb ≥ 0.001
∑
f ∈F

yfsmb ∀ s ∈ S, m ∈ Ws, b ∈ B, (12)

∑
p∈P

∑
α∈N

npαsmb ≤ Ks

∑
f ∈F

yfsmb ∀ s ∈ S, m ∈ Ws, b ∈ B. (13)

All customer demand must be assigned to stage 1, ensuring that all demand is satisfied:∑
α∈N

∑
m∈W1

∑
b∈B

npα1mb = Dp ∀ p ∈ P. (14)

The size of a sublot of product p that is processed in stage 1 and stage 2 should be consistent—i.e. the size of a sublot of
product p processed in stage 2 should equal the size of a sublot of product p processed in stage 1. However, two sublots
of a product can be processed in one batch position so that the actual sublot size of product p on machine m in stage s is
determined by

∑
α∈N npαsmb. Products produced in stage 2 satisfy customer demand:

npα1kj ≥
∑

m∈W2

∑
b∈B

npα2mb + M1

(∑
m∈W2

∑
b∈B

zpαkjmb −
∑

m∈W2

∑
b∈B

xpα2mb

)
∀ p ∈ P, α ∈ N , k ∈ W1, j ∈ B, (15)

npα1kj ≤
∑

m∈W2

∑
b∈B

npα2mb ∀ p ∈ P, α ∈ N , k ∈ W1, j ∈ B, (16)

npα1kj ≤ M1

∑
m∈W2

∑
b∈B

zpαkjmb ∀ p ∈ P, α ∈ N , k ∈ W1, j ∈ B. (17)

The completion time of product sublot α processed by batch position b on machine m in stage s equals the completion time
of the batch position that is used for family f :

Cpαsmb ≥ δfsmb + M3(xpαsmb − 1) ∀ p ∈ P, α ∈ N , s ∈ S, f ∈ F, m ∈ Ws, b ∈ B. (18)

The completion time of a batch position on any machine in stage s is its starting time plus the associated product family’s
processing time in stage s:

δfsmb ≥ Afsmb + tfs + M3(yfsmb − 1) ∀ f ∈ F ∪ {0}, s ∈ S, m ∈ Ws, b ∈ B ∪ {0}. (19)
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The setup for a sublot on a machine is subject to:

Agsm,b+1 ≥ δfsmb + βsm
fbg,b+1τfg − M3(1 − βsm

fbg,b+1)

∀ f ∈ F ∪ {0}, g ∈ F, s ∈ S, m ∈ Ws, b ∈ (B ∪ {0}) \ {|B|}, (20)

Ag2m,b+1 ≥ Cpα1kj + βsm
fbg,b+1τfg − M3(2 − βsm

fbg,b+1 − zpαkjmb)

∀ p ∈ P, α ∈ N , k ∈ W1, m ∈ W2, f ∈ F ∪ {0}, g ∈ F, b ∈ (B ∪ {0}) \ {|B|}. (21)

Constraint (20) ensures that the overlapping of sublots on the same machine is prevented. Sublots processed in batch position
b + 1 on machine m in stage s can start only after sublots assigned to batch position b on machine m in stage s have been
completed. Constraint (21) requires that sublots can only start in stage 2 after their completion in stage 1. Variable type
constraints are given by

xpαsmb, yfsmb, zpkjmb, upα , βsm
fbg,b+1 ∈ {0, 1}

∀ p ∈ P, α ∈ N , f , g ∈ F ∪ {0}, s ∈ S, k, m ∈ Ws, j, b ∈ B ∪ {0}, (22)

npαsmb, δfsmb, Afsmb, Cpαsmb ≥ 0,

∀ p ∈ P, α ∈ N , f ∈ F ∪ {0}, s ∈ S, m ∈ Ws, b ∈ B. (23)

3.3. Valid inequalities

To improve tractability, two symmetry-breaking valid inequalities are added:

yf 211 ≥ yf 111 ∀ f ∈ F ∪ {0}, (24)∑
α∈N

xpα111 ≥
∑
α∈N

xpα211 ∀ p ∈ P. (25)

If a product family is assigned to the first batch position on the first machine in stage 1, it must be assigned to a batch
position on machine m in stage 2. Without loss of generality, we assign this product family to the first batch position on the
first machine in stage 2 in (24). Similarly, (25) specifies that product p sublots in the first batch position on the first machine
in stage 2 are from the sublots in the first batch position on the first machine in stage 1.

3.4. Lower bound

To evaluate solution quality, we develop a lower bound. We first aggregate product demands
∑

p Dpρpf for each product
family f. Then these aggregated products are split based on stage 2’s capacity to form batches. We assume stage 1 has infinite
number of machines and all products are processed at the beginning of the time horizon. Hence, the start time of each batch
in stage 2 equals the processing time tf 1 of the product family of this batch. If there is more than one product in a batch, then
we assign the weights of all products in this batch as min{wp}. Otherwise, product weight in this batch is wp. Next, we pick
batches according to increasing tf 2/wp and assign them to available machines in stage 2, ignoring setup times.

4. Heuristics

The heuristics must handle sublot formation and scheduling. Sublot formation involves product sequencing and splitting,
while sublot scheduling consists of sublot sequencing and assigning formed sublots on machines. To sequence products, we
adapt three common approaches found in scheduling literature:

• Random Key Method (RK): Sample random numbers from U [0, 1000] that are mapped to product numbers; the
numbers are sorted according to these keys to create a sequence. Assume three products and the random string [42,
38, 34] is sampled for the products indexed [1, 2, 3]. Sorting the random numbers and the product indexes together
results in the sequence [3, 2, 1].

• Weighted Shortest Processing Time (WSPT): The product with the smallest weighted processing time in stage 1 is
selected (Li et al. 2015). The processing time for product p depends on its family type. Therefore, the weighted
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processing time for product p in stage 1, denoted wtp, is defined as:

wtp = tfp1

wp
∀ p ∈ P, (26)

where fp represents the family type of product p and wp is product p’s weight.
• Johnson’s Rule (JR): Select the unscheduled product with the shortest processing time in either stage, denoted tfps.

If the shortest time is in stage 1, schedule the product as early as possible in the sequence. Otherwise, schedule the
product as late as possible. Remove the product from the list of unscheduled products. Repeat until all products
have been scheduled. If there is a tie for shortest processing time, arbitrarily choose one of the products.

The processes of splitting sequenced products to form sublots and assigning and sequencing the formed sublots on
machines are completed simultaneously. We begin with splitting the first product according to our splitting rules. Three
methods are used for splitting products:

• Stage 1’s Capacity (C1): If product p’s demand is greater than stage 1’s capacity, split this product using stage 1’s
capacity. Otherwise, sublot size equals product p’s demand.

• Stage 2’s Capacity (C2): If product p’s demand is greater than stage 2’s capacity, split this product using stage 2’s
capacity. Otherwise, sublot size equals product p’s demand.

• Random Sublot Size (R): If product p’s demand is greater than stage 1’s capacity, split it using a random number
generated using uniform distribution [0, K1]. Otherwise, sublot size equals equals product p’s demand.

Sublots for the first product are assigned to appropriate batch positions on available machines in stage 1 to minimise
the completion time of sublots. The rule of selecting sublots is picking in a decreasing order of sublot sizes, breaking ties
arbitrarily.

For the next product p to be split, check if there is a partial batch that is not full and of the same family. If so, fill out
this batch position with min{left capacity of this batch position, Dp}. Then, split this product into sublots and assign formed
sublots on machines according to the procedures described above for the first product.

As stage 2’s capacity is less than stage 1’s, some formed batches in stage 1 may have to be split for stage 2. The split
batches, now sublots, are assigned to available machines in stage 2 to minimise TWCT. Different heuristics are tested by
applying the combinations of proposed product-sequencing methods and splitting rules (see Table 1).

After generating the schedule for all products in each stage, we will conduct random local search (RLS) for both stage
1 and stage 2 individually to generate more possible schedules. New schedules are generated by swapping two randomly
selected batches on machines in stage 1 and stage 2 individually. Figure 3 shows the procedure of randomly swapping two
batch positions in stage 1. We randomly select two batch positions: [P1(3.4), P3(3.8)] and [P3(7.2)]. In these two batches,
one has two sublots (3.4 tons of product 1 and 3.8 tons of product 3) and the other has one sublot (7.2 tons of product 3).
Then, we swap the sublots in these two batch positions to form a new schedule for stage 1.

5. Computational experiments

To investigate the performance of the proposed MILP and heuristic algorithms, 40 instances are generated (Table 2). The
first 10 instances are smaller than the last 30 instances in terms of product demands and the number of machines in stage 2.
In Instances 1-10 (11-40), all instances have one machine in stage 1 with a capacity of 7.2 units and two (three) identical
parallel vessels each with capacity of 4 in stage 2. Products in the same order have the same weights: random integers
between 1 and 3 (i.e. wp ∼ DU [1, 3]). Table 3 provides the number of orders and the number of products in each order
for all instances. As shown in Table 3, 2-3 products are studied in each order for painting cargo containers (CCs), ship
hulls (SHs), or industrial structures (ISs) with probability 0.05, 0.25, and 0.7, respectively. In Instances 1-10, demand for
primer for all orders are randomly generated according to uniform distributions U [1, 15]. For Instances 11-40, primer

Table 1. Heuristic description.

Sequencing

Splitting RK WSPT JR

C1 C1R C1W C1J
C2 C2R C2W C2J
R RR RW RJ
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Figure 3. An example of randomly swapping two batch positions in stage 1.

Table 2. Experimental design for numerical instances.

Parameter Value description

Order type CCs with probability of 0.05
SHs with probability of 0.25
ISs with probability of 0.7

Weight DU [1,3]
Primer demand (Instance 1- 10) U [1,15]
Primer Demand (Instance 11- 30) CCs: U [12,25]

SHs: U [12,45]
ISs: U [7,35]

Table 3. Processing times and setup times for numerical instances.

Instances Number of orders Number of products in each order

1—5 1 2
6–10 1 3
11–15 1 2
16–20 1 3
21–25 2 (Order1, 2), (Order 2, 2)
26–30 2 (Order1, 2), (Order 2, 3)
31–35 2 (Order1, 3), (Order 2, 2)
36–40 2 (Order1, 3), (Order 2, 3)

Table 4. Processing times and setup times for numerical instances.

Processing Time Setup Time

Family Stage 1 Stage 2 Family 1 Family 2 Family 3

1 2.14 3.36 0 0.5 0.7
2 2.73 1.52 0.3 0 1
3 1.67 2.44 0.8 0.8 0

demand in CC, SH and IS orders are generated using real demand distributions which are U [12, 25], U [12, 45] and U
[7, 35], respectively, while demand for top coat and undercoat paint are 50% of and 20% of the ordered primer quantity,
respectively. Primer, top coat paint, and undercoat paint belong to three incompatible product families. The processing times
and setup times (Table 4) are common for all instances.

The optimisation model and algorithms were implemented using JuMP and Gurobi 7.0.1 on Clemson University’s high-
performance computing resource, the Palmetto Cluster, which has Intelő Xenonő CPU, 16 core processors @ 2.65 GHz and
128 GB RAM.
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Table 5. Gurobi results (1hr) for MILP experiments and LBs.

Original MILP MILP2VI LBs

Instance TWCTO LBO GapO TWCT2VI LB2VI Gap2VI LBH �

1 18.52 18.52 0.0% 18.52 18.52 0.0% 9.16 50.5%
2 48.98 48.98 0.0% 48.98 48.98 0.0% 16.18 67.0%
3 37.51 37.51 0.0% 37.51 37.51 0.0% 16.18 56.9%
4 48.98 48.98 0.0% 48.98 48.98 0.0% 16.18 67.0%
5 48.98 48.98 0.0% 48.98 48.98 0.0% 16.18 67.0%
6 63.59 59.09 7.1% 63.59 63.59 0.0% 23.20 63.5%
7 29.70 29.70 0.0% 29.70 29.70 0.0% 15.26 48.6%
8 63.59 59.88 5.8% 63.59 63.59 0.0% 23.20 63.5%
9 51.13 33.09 35.3% 51.13 51.13 0.0% 23.20 54.6%
10 29.70 29.70 0.0% 29.70 29.70 0.0% 15.26 48.6%
11 195.69 10.08 94.8% 196.32 13.45 93.1% 98.88 49.5%
12 444.72 26.88 94.0% 652.62 3.04 99.5% 281.96 36.6%
13 209.16 16.80 92.0% 201.40 16.80 91.7% 123.88 38.5%
14 269.16 26.88 90.0% 265.32 26.88 89.9% 170.28 35.8%
15 170.70 20.16 88.2% 174.87 4.56 97.4% 107.16 37.2%
16 120.10 0.00 100.0% 99.30 0.00 100.0% 67.76 31.8%
17 209.43 0.00 100.0% 161.48 0.00 100.0% 74.16 54.1%
18 121.00 0.00 100.0% 127.46 0.00 100.0% 74.16 38.7%
19 190.16 0.00 100.0% 201.74 0.00 100.0% 122.68 35.5%
20 239.07 0.00 100.0% 190.13 0.00 100.0% 111.38 41.4%
21 595.59 0.00 100.0% 545.78 0.00 100.0% 271.64 50.2%
22 747.05 0.00 100.0% 731.50 0.00 100.0% 352.04 51.9%
23 1164.73 0.00 100.0% 1013.79 0.00 100.0% 436.40 57.0%
24 367.71 0.00 100.0% 305.13 0.00 100.0% 128.78 57.8%
25 1218.18 0.00 100.0% 1209.82 0.00 100.0% 523.82 56.7%
26 220.35 0.00 100.0% 199.76 0.00 100.0% 96.12 51.9%
27 978.54 0.00 100.0% 1053.34 0.00 100.0% 483.24 50.6%
28 1469.84 0.00 100.0% 1414.64 0.00 100.0% 607.68 57.0%
29 928.25 0.00 100.0% 999.86 0.00 100.0% 417.66 55.0%
30 624.94 0.00 100.0% 665.49 0.00 100.0% 245.32 60.7%
31 285.10 0.00 100.0% 425.8 0.00 100.0% 126.94 55.5%
32 – – – – – – 802.04 –
33 755.39 0.00 100.0% 895.05 0.00 100.0% 339.58 55.0%
34 1337.34 0.00 100.0% 1258.72 0.00 100.0% 530.24 57.9%
35 1616.12 0.00 100.0% 1397.6 0.00 100.0% 406.48 70.9%
36 991.89 0.00 100.0% 1111.39 0.00 100.0% 373.16 62.4%
37 3359.01 0.00 100.0% 1627.82 0.00 100.0% 620.78 61.9%
38 2272.91 0.00 100.0% 2474.04 0.00 100.0% 791.28 65.2%
39 1574.21 0.00 100.0% 1109.37 0.00 100.0% 451.46 59.3%
40 565.58 0.00 100.0% 504.46 0.00 100.0% 220.56 56.3%

5.1. MILP results and quality of the LB

Per company requirements, each MILP instance can run for at most 1 hour, given the need to make twice-a-day production
schedules. In our experiments, optimal solutions were only found for seven small instances (1-5, 7 and 10) using the original
MILP formulation. All other instances stopped at the 1-hour limit before finding an optimal solution. For Instance 32, no
feasible solution was found. Table 5 summarises Gurobi solutions. The 2nd and 5th columns provide the current incumbents
(i.e. the best objective values) found by Gurobi for the original MILP and the MILP with two valid inequalities (MILP2VI).
Instance 6, 8 and 9 found optimal solutions using the valid inequalities. For Instances 11-40, although the use of the valid
inequalities did not improve solutions for all instances, the solutions were improved 2.1%, on average. Hence, further
experiments will be conducted using the valid inequalities unless otherwise noted.

The optimality gap, the difference between the current incumbent solution and Gurobi’s LB, is provided in the 3rd and
6th columns in Table 5. A 0%(100%) optimality gap of 0 means Gurobi found the optimal solution (no LB). Table 5 shows
that the LBs returned by Gurobi for Instances 11-40 are poor for both MILP and MILP2VI. In instances with more than two
products (16-40), the optimality gap is always 100%. The average gaps of all instances using MILP and MILP2VI are 75.4%
and 73.6%, respectively.

Let � denote the gap between the minimum objective value obtained from the original MILP and MILP2VI (ie., TWCTO

and TWCT2VI ) and our calculated LB (LBH ) such that � = (min{TWCTO, TWCT2VI} − LBH )/min{TWCTO, TWCT2VI}. The
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Table 6. Min, Mean, Max objective value, average GapH , and computational time of heuristics.

C1R C2R RR

Instances Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s)

1 18.52 18.52 18.52 50.5% 2.17 22.67 22.67 22.67 59.6% 2.58 18.52 18.52 18.52 50.5% 2.40
2 48.98 48.98 48.98 67.0% 3.45 64.69 64.69 64.69 75.0% 3.77 48.98 48.98 48.98 67.0% 3.86
3 37.51 37.51 37.51 56.9% 3.39 48.99 48.99 48.99 67.0% 3.59 37.51 37.51 37.51 56.9% 3.12
4 48.98 48.98 48.98 67.0% 3.45 64.69 64.69 64.69 75.0% 3.68 48.98 48.98 48.98 67.0% 3.86
5 48.98 48.98 48.98 67.0% 3.48 64.69 64.69 64.69 75.0% 3.74 63.81 63.81 63.81 74.6% 4.23
6 63.59 63.59 63.59 63.5% 4.30 84.90 84.90 84.90 72.7% 4.69 63.59 63.59 63.59 63.5% 4.40
7 29.70 29.70 29.70 48.6% 2.61 34.99 34.99 34.99 56.4% 2.74 29.70 29.70 29.70 48.6% 2.36
8 63.59 63.59 63.59 63.5% 4.39 65.75 65.75 65.75 64.7% 3.84 63.59 63.59 63.59 63.5% 4.10
9 51.13 51.13 51.13 54.6% 3.59 65.75 65.75 65.75 64.7% 3.79 51.13 51.13 51.13 54.6% 3.89
10 29.70 29.70 29.70 48.6% 2.63 34.99 34.99 34.99 56.4% 2.71 29.70 29.70 29.70 48.6% 2.63
11 176.39 176.39 176.39 43.9% 7.04 208.28 208.57 208.78 52.6% 7.05 177.67 193.02 214.59 48.8% 10.13
12 438.34 438.34 438.34 35.7% 8.12 619.70 620.94 621.70 54.6% 8.56 442.40 498.48 535.10 43.4% 12.48
13 193.68 193.68 193.68 36.0% 7.25 274.52 274.98 275.39 54.9% 7.24 193.68 212.31 227.81 41.7% 10.46
14 267.54 268.21 268.54 36.5% 5.75 358.48 358.86 359.48 52.5% 6.36 268.54 268.54 268.54 36.6% 8.04
15 223.47 223.49 223.56 52.1% 4.11 192.57 192.57 192.57 44.4% 2.48 223.47 223.61 224.10 52.1% 4.75
16 99.30 99.30 99.30 31.8% 3.14 129.90 129.90 129.90 47.8% 3.41 99.30 99.30 99.30 31.8% 3.62
17 124.46 124.60 124.61 40.5% 5.79 154.22 154.22 154.22 51.9% 6.50 124.61 125.51 127.96 40.9% 6.97
18 104.58 104.58 104.58 29.1% 5.24 154.22 154.22 154.22 51.9% 6.24 104.58 107.19 115.43 30.8% 6.69
19 185.42 185.67 186.02 33.9% 4.65 254.92 256.15 256.92 52.1% 4.73 185.42 186.24 187.02 34.1% 5.60
20 154.90 154.90 154.90 28.1% 6.78 242.89 242.89 242.89 54.1% 7.76 154.90 175.98 188.53 36.7% 9.06
21 506.87 507.24 507.79 46.4% 10.35 535.61 542.41 550.89 49.9% 9.62 516.43 564.02 610.17 51.8% 12.99
22 599.37 606.64 610.60 42.0% 14.99 782.31 800.67 816.38 56.0% 15.50 759.27 827.23 890.35 57.4% 20.56
23 742.74 742.74 742.74 41.2% 10.75 1043.3 1063.17 1077.83 59.0% 10.86 857.50 969.03 1046.37 55.0% 15.46
24 245.82 246.30 246.44 47.7% 7.37 271.75 275.06 279.41 53.2% 5.33 247.88 254.72 269.24 49.4% 9.23
25 878.85 882.60 885.51 40.7% 12.65 1121.74 1140.66 1159.00 54.1% 12.15 1068.18 1128.52 1184.95 53.6% 15.31
26 174.21 174.21 174.21 44.8% 7.97 185.38 185.50 186.30 48.2% 6.49 174.21 174.81 176.93 45.0% 7.95
27 799.50 806.32 810.90 40.1% 11.80 1048.16 1072.79 1099.84 55.0% 8.08 866.94 968.50 1048.24 50.1% 14.87
28 1145.54 1154.20 1162.02 47.4% 15.59 1356.48 1370.50 1392.62 55.7% 14.11 1270.82 1375.86 1504.82 55.8% 18.31
29 652.87 659.02 662.12 36.6% 9.56 878.75 889.22 902.95 53.0% 9.15 717.72 737.96 771.24 43.4% 11.00
30 444.92 447.67 451.52 45.2% 10.28 640.37 652.37 661.63 62.4% 7.71 485.42 524.22 559.91 53.2% 12.77
31 204.05 204.49 206.60 37.9% 6.27 251.54 258.51 262.83 50.9% 7.28 204.05 208.94 217.43 39.2% 7.70
32 1355.95 1366.96 1371.08 41.3% 16.77 1849.43 1880.71 1909.23 57.4% 13.88 1696.63 1841.27 1970.89 56.4% 19.93
33 578.28 580.77 584.52 41.5% 9.70 697.11 706.66 716.55 51.9% 10.03 578.88 606.96 628.46 44.1% 11.77
34 924.62 928.19 934.64 42.9% 12.41 1140.30 1154.84 1176.62 54.1% 8.62 1029.42 1130.26 1203.38 53.1% 17.50
35 685.99 689.47 691.49 41.0% 8.21 963.68 978.00 986.68 58.4% 8.71 784.14 869.08 923.52 53.2% 16.91
36 789.58 796.60 800.00 53.2% 11.96 828.24 853.12 868.47 56.3% 6.92 838.55 882.54 924.30 57.7% 13.20
37 1083.06 1085.16 1095.63 42.8% 14.53 1300.86 1321.69 1329.58 53.0% 13.71 1307.33 1390.31 1470.94 55.3% 16.95
38 1355.74 1368.35 1379.48 42.2% 17.65 1860.64 1887.61 1902.64 58.1% 10.34 1659.95 1826.03 1908.28 56.7% 20.25
39 788.76 790.01 794.24 42.9% 17.71 1023.08 1038.22 1043.78 56.5% 16.20 970.13 1039.97 1103.90 56.6% 19.68
40 381.51 383.54 384.87 42.5% 12.15 451.16 462.10 471.60 52.3% 7.78 462.91 486.99 521.08 54.7% 14.64

C1W C2W RW

Instances Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s)

1 18.52 18.52 18.52 50.5% 2.32 22.67 22.67 22.67 59.6% 2.67 18.52 18.52 18.52 50.5% 1.37
2 48.98 48.98 48.98 67.0% 3.38 64.69 64.69 64.69 75.0% 3.40 48.98 48.98 48.98 67.0% 2.28
3 37.51 37.51 37.51 56.9% 3.16 48.99 48.99 48.99 67.0% 3.22 37.51 37.51 37.51 56.9% 1.95
4 48.98 48.98 48.98 67.0% 3.31 64.69 64.69 64.69 75.0% 3.38 48.98 48.98 48.98 67.0% 2.32
5 48.98 48.98 48.98 67.0% 3.29 64.69 64.69 64.69 75.0% 3.75 63.81 63.81 63.81 74.6% 2.61
6 63.59 63.59 63.59 63.5% 4.26 84.90 84.90 84.90 72.7% 4.82 63.59 63.59 63.59 63.5% 2.75
7 29.70 29.70 29.70 48.6% 2.63 34.99 34.99 34.99 56.4% 2.93 29.70 29.70 29.70 48.6% 1.58
8 63.59 63.59 63.59 63.5% 4.13 65.75 65.75 65.75 64.7% 4.00 63.59 63.59 63.59 63.5% 2.90
9 51.13 51.13 51.13 54.6% 3.64 65.75 65.75 65.75 64.7% 3.91 51.13 51.13 51.13 54.6% 2.79
10 29.70 29.70 29.70 48.6% 2.97 34.99 34.99 34.99 56.4% 2.96 29.70 29.70 29.70 48.6% 2.90

(Continued).
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Table 6. Continued.

C1W C2W RW

Instances Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s)

11 176.39 176.39 176.39 43.9% 7.81 208.28 208.49 208.78 52.6% 7.11 177.67 191.30 207.46 48.3% 11.63
12 438.34 438.34 438.34 35.7% 9.37 619.70 620.75 621.70 54.6% 8.49 449.76 494.52 528.76 43.0% 13.14
13 193.68 193.68 193.68 36.0% 8.46 274.39 274.84 275.02 54.9% 7.76 193.68 210.21 232.52 41.1% 12.16
14 267.54 268.27 268.54 36.5% 6.69 358.48 358.60 359.48 52.5% 5.75 268.54 268.54 268.54 36.6% 9.39
15 223.47 223.48 223.56 52.1% 4.75 192.57 192.57 192.57 44.4% 3.88 223.47 223.56 223.95 52.1% 6.12
16 99.30 99.30 99.30 31.8% 3.92 129.90 129.90 129.90 47.8% 4.03 99.30 99.30 99.30 31.8% 4.85
17 124.61 124.61 124.61 40.5% 6.51 154.22 154.22 154.22 51.9% 6.52 124.61 126.39 129.34 41.3% 8.66
18 104.58 104.58 104.58 29.1% 5.69 154.22 154.22 154.22 51.9% 6.29 104.58 107.42 114.09 31.0% 8.32
19 185.42 186.17 186.26 34.1% 5.42 255.32 256.00 256.88 52.1% 5.61 185.68 186.30 187.56 34.1% 7.04
20 154.90 154.90 154.90 28.1% 6.72 242.89 242.89 242.89 54.1% 8.05 154.90 178.19 192.72 37.5% 10.96
21 506.87 506.87 506.87 46.4% 12.25 534.73 538.73 541.07 49.6% 9.99 507.79 529.53 544.70 48.7% 15.44
22 599.37 604.72 608.12 41.8% 15.54 782.31 794.03 799.76 55.7% 15.64 730.87 797.80 852.42 55.9% 22.17
23 742.74 742.74 742.74 41.2% 11.63 1055.02 1063.77 1074.11 59.0% 11.20 837.72 897.69 965.50 51.4% 17.24
24 245.82 245.84 246.41 47.6% 8.63 271.75 273.54 274.49 52.9% 7.98 245.82 248.70 250.00 48.2% 7.63
25 878.85 879.55 882.45 40.4% 12.77 1104.78 1125.27 1141.34 53.4% 12.21 955.51 1056.79 1142.91 50.4% 12.09
26 174.21 174.21 174.21 44.8% 7.72 185.38 185.99 186.30 48.3% 7.81 174.21 176.43 179.71 45.5% 6.89
27 799.50 804.84 811.16 40.0% 13.38 1035.96 1059.94 1084.64 54.4% 12.10 892.58 989.60 1041.44 51.2% 11.58
28 1141.76 1159.37 1169.02 47.6% 14.29 1340.36 1361.14 1391.82 55.4% 14.24 1300.28 1395.68 1505.56 56.5% 14.36
29 657.84 658.15 658.26 36.5% 9.16 874.50 895.69 908.30 53.4% 10.75 708.53 717.92 731.75 41.8% 8.64
30 445.54 446.28 447.25 45.0% 11.89 628.93 638.99 647.79 61.6% 11.97 453.38 487.79 518.60 49.7% 10.19
31 203.12 204.01 204.05 37.8% 7.52 258.42 261.50 264.11 51.5% 7.43 204.05 207.18 212.19 38.7% 7.31
32 1361.75 1372.04 1394.37 41.5% 17.18 1837.83 1852.13 1865.63 56.7% 16.38 1619.94 1738.17 1818.15 53.9% 20.42
33 578.88 580.33 583.16 41.5% 9.59 701.02 707.26 713.63 52.0% 10.17 584.16 597.33 606.42 43.2% 11.48
34 934.54 941.08 950.18 43.7% 13.54 1130.06 1146.31 1155.90 53.7% 12.91 1046.70 1130.92 1195.32 53.1% 17.25
35 685.99 685.99 685.99 40.7% 14.00 951.76 958.84 963.68 57.6% 13.26 732.34 789.02 835.70 48.5% 16.13
36 792.41 795.49 798.62 53.1% 11.08 853.84 863.08 872.13 56.8% 11.61 803.08 847.93 875.60 56.0% 13.79
37 1079.70 1081.81 1085.59 42.6% 14.10 1301.50 1321.55 1333.02 53.0% 14.07 1218.68 1329.13 1426.69 53.3% 13.82
38 1355.74 1360.11 1362.46 41.8% 16.34 1850.86 1868.72 1883.80 57.7% 15.58 1490.88 1704.66 1808.89 53.6% 15.09
39 786.96 788.82 789.86 42.8% 17.79 1012.95 1024.80 1032.08 55.9% 16.76 926.75 971.29 1034.89 53.5% 15.97
40 382.31 385.77 388.22 42.8% 12.51 450.46 452.73 454.95 51.3% 12.45 461.20 472.17 495.37 53.3% 12.54

C1J C2J RJ

Instances Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s)

1 18.52 18.52 18.52 50.5% 1.34 22.67 22.67 22.67 59.6% 2.39 18.52 18.52 18.52 50.5% 2.48
2 48.98 48.98 48.98 67.0% 3.59 64.69 64.69 64.69 75.0% 3.39 48.98 48.98 48.98 67.0% 4.40
3 37.51 37.51 37.51 56.9% 3.12 48.99 48.99 48.99 67.0% 3.20 37.51 37.51 37.51 56.9% 3.62
4 48.98 48.98 48.98 67.0% 3.32 64.69 64.69 64.69 75.0% 3.37 48.98 48.98 48.98 67.0% 4.33
5 48.98 48.98 48.98 67.0% 3.24 64.69 64.69 64.69 75.0% 3.70 63.81 63.81 63.81 74.6% 4.82
6 63.59 63.59 63.59 63.5% 4.22 84.90 84.90 84.90 72.7% 4.80 63.59 63.59 63.59 63.5% 5.08
7 29.70 29.70 29.70 48.6% 2.61 34.99 34.99 34.99 56.4% 2.56 29.70 29.70 29.70 48.6% 2.99
8 63.59 63.59 63.59 63.5% 4.20 65.75 65.75 65.75 64.7% 3.93 63.59 63.59 63.59 63.5% 4.92
9 51.13 51.13 51.13 54.6% 3.45 65.75 65.75 65.75 64.7% 3.77 51.13 51.13 51.13 54.6% 4.69
10 29.70 29.70 29.70 48.6% 2.95 34.99 34.99 34.99 56.4% 2.87 29.70 29.70 29.70 48.6% 2.86
11 176.39 176.39 176.39 43.9% 7.80 208.28 208.51 208.78 52.6% 6.76 178.72 190.97 204.04 48.2% 10.56
12 438.34 438.34 438.34 35.7% 6.18 619.96 620.80 621.70 54.6% 6.01 440.90 489.38 538.56 42.4% 11.00
13 193.18 193.66 193.68 36.0% 7.21 274.52 274.88 275.39 54.9% 5.30 193.68 212.94 236.18 41.8% 7.20
14 267.54 268.27 268.54 36.5% 5.89 358.48 358.52 359.48 52.5% 4.28 268.54 268.54 268.54 36.6% 5.61
15 223.47 223.48 223.56 52.1% 4.22 192.57 192.57 192.57 44.4% 2.79 223.47 223.53 223.95 52.1% 3.56
16 99.30 99.30 99.30 31.8% 3.56 129.90 129.90 129.90 47.8% 2.78 99.30 99.30 99.30 31.8% 2.76
17 124.61 124.61 124.61 40.5% 5.71 154.22 154.22 154.22 51.9% 4.31 124.61 126.36 129.02 41.3% 7.37
18 104.58 104.58 104.58 29.1% 5.53 154.22 154.22 154.22 51.9% 4.31 104.58 108.83 116.69 31.9% 6.97
19 185.96 186.20 186.26 34.1% 4.89 254.92 256.03 256.88 52.1% 3.81 185.42 186.34 187.02 34.2% 6.19
20 154.90 154.90 154.90 28.1% 6.94 242.89 242.89 242.89 54.1% 5.48 154.90 178.14 189.83 37.5% 10.04
21 515.49 534.83 546.38 49.2% 11.00 568.16 601.26 622.62 54.8% 10.31 554.43 615.96 668.69 55.9% 15.57
22 603.02 605.05 608.57 41.8% 14.88 776.66 793.49 808.32 55.6% 10.78 728.16 804.24 852.71 56.2% 23.08
23 746.52 753.55 765.72 42.1% 11.22 1033.91 1061.91 1080.77 58.9% 12.09 864.11 975.33 1071.95 55.3% 17.83
24 253.01 253.60 254.83 49.2% 7.86 278.58 285.47 290.19 54.9% 5.77 253.82 263.38 276.04 51.1% 10.88
25 883.43 892.47 898.27 41.3% 8.20 1128.47 1166.23 1188.29 55.1% 11.60 1039.73 1133.51 1212.49 53.8% 17.22

(Continued).
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Table 6. Continued.

C1J C2J RJ

Instances Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s) Min Mean Max GapH

Time
(s)

26 174.21 174.21 174.21 44.8% 5.95 185.38 185.87 186.30 48.3% 7.81 174.21 175.87 179.01 45.3% 10.06
27 799.50 805.08 811.68 40.0% 9.15 1039.64 1053.88 1075.36 54.1% 13.27 910.14 1000.66 1055.60 51.7% 17.53
28 1144.22 1154.23 1165.98 47.4% 10.94 1340.36 1361.43 1366.04 55.4% 14.66 1231.16 1391.72 1468.46 56.3% 21.70
29 678.68 681.62 685.41 38.7% 7.34 878.75 900.96 912.74 53.6% 10.25 737.70 744.67 758.55 43.9% 12.37
30 462.26 466.39 471.42 47.4% 8.30 655.10 669.63 680.12 63.4% 11.78 494.56 526.15 567.79 53.4% 15.16
31 217.91 218.18 219.57 41.8% 5.44 262.67 265.58 269.07 52.2% 7.22 217.91 227.32 235.45 44.2% 9.08
32 1492.14 1503.22 1525.75 46.6% 11.84 1878.69 1917.59 1950.56 58.2% 15.75 1743.92 1911.52 2044.15 58.0% 23.60
33 603.56 604.46 605.14 43.8% 7.39 698.59 713.48 729.27 52.4% 10.18 586.04 626.30 656.60 45.8% 13.07
34 931.66 941.79 954.84 43.7% 9.86 1138.18 1157.48 1180.44 54.2% 14.13 1014.42 1143.00 1208.30 53.6% 19.91
35 741.70 762.31 772.71 46.7% 9.48 1026.66 1089.08 1114.61 62.7% 13.73 873.25 934.02 988.04 56.5% 11.79
36 812.05 821.75 836.15 54.6% 8.89 818.91 826.91 843.29 54.9% 11.62 876.17 903.80 930.31 58.7% 15.82
37 1121.94 1141.33 1151.24 45.6% 10.94 1347.35 1374.28 1399.88 54.8% 14.88 1298.77 1416.95 1510.08 56.2% 13.52
38 1373.12 1389.36 1400.40 43.0% 12.21 1846.89 1888.37 1902.28 58.1% 16.49 1610.55 1730.72 1827.03 54.3% 23.25
39 816.83 829.03 840.87 45.5% 12.06 1084.82 1124.61 1158.26 59.9% 16.74 1016.43 1085.57 1158.52 58.4% 21.66
40 381.51 385.30 388.80 42.8% 9.25 453.80 458.03 468.64 51.8% 12.51 464.37 477.96 502.21 53.9% 16.83

Figure 4. Confidence interval for the medians (40 instances).

Figure 5. Confidence interval for the medians. (a) Instance O6 and (b) Instance O10.
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Table 7. Input objective values and gurobi results.

Instance Vin Vout
Vin−Vout

Vin
LBGH GapGH Instance Vin Vout

Vin−Vout
Vin

LBGH GapGH

11 176.39 170.04 3.6% 16.66 41.8% 26 174.21 154.90 11.1% 0.00 37.9%
12 438.34 405.58 7.5% 38.29 30.5% 27 809.48 787.54 2.7% 0.00 38.6%
13 193.68 189.65 2.1% 18.00 34.7% 28 1150.94 1103.82 4.1% 0.00 44.9%
14 267.54 258.70 3.3% 31.08 34.2% 29 657.84 613.28 6.8% 0.00 31.9%
15 223.47 161.97 27.5% 29.35 33.8% 30 446.02 423.15 5.1% 0.00 42.0%
16 99.30 99.30 0.0% 0.00 31.8% 31 204.05 194.39 4.7% 0.00 34.7%
17 124.61 124.44 0.1% 15.56 40.4% 32 1363.97 1312.11 3.8% 0.00 38.9%
18 104.58 103.84 0.7% 1.52 28.6% 33 578.88 548.09 5.3% 0.00 38.0%
19 185.96 185.96 0.0% 3.04 34.0% 34 929.44 890.70 4.2% 0.00 40.5%
20 154.90 154.90 0.0% 3.49 28.1% 35 685.99 660.35 3.7% 0.00 38.4%
21 506.87 434.61 14.3% 0.00 37.5% 36 793.50 756.44 4.7% 0.00 50.7%
22 601.51 569.36 5.3% 0.00 38.2% 37 1081.18 992.40 8.2% 0.00 37.4%
23 742.74 723.42 2.6% 0.00 39.7% 38 1355.74 1289.56 4.9% 0.00 38.6%
24 245.82 236.72 3.7% 0.00 45.6% 39 788.06 783.53 0.6% 0.00 42.4%
25 878.85 872.49 0.7% 0.00 40.0% 40 384.11 379.20 1.3% 0.00 41.8%

value of LBH and � are listed in the 8th and 9th columns of Table 5. Although our LBs are less than the Gurobi LB for small
instances (1-10), our LB is always greater than the Gurobi LB for medium-size instances (11-40), resulting in an average
� which is about 51.5%. As in Hoogeveen, Van Norden, and van de Velde (2006), we struggle to find a good LB, whether
from Gurobi or LBH . Nonetheless, using the LBs allows us to normalise the performance metric to a consistent measure
relative to the value found. Therefore, we will use our LB for further assessment of heuristics.

5.2. Comparing heuristics

We compute the objective value and running time for 30 test runs of each instance. Let TWCTH denote the average objective
value achieved by applying each heuristic listed in Table 1. The gap, GapH = ((TWCTH − LBH )/TWCTH )%, is computed
to assess heuristics solution quality. Table 6 list the minimum, mean, and maximum objective value, the GapH , and the
computational time of all 40 instances for each heuristic. For Instances 1-10, heuristics C1R, C1W , and C1J found optimal
solutions while other methods found near-optimal solutions. For Instances 11-40 except Instance 15, the heuristics provided
better objective values than Gurobi (1-hour time limit). All proposed heuristics found feasible solutions for Instance 32
within 24 seconds. The Mood’s median test, a non-parametric method for testing whether two or more populations are from
the same distribution based on their medians, is used. It provides 95% confidence intervals (CIs) for medians to compare
the heuristics testing the following null hypothesis: all medians of all GapH are equal. The p-value of ∼ 0.0001 (< 0.05)

indicates that we can reject the null hypothesis. The CIs of GapH for all heuristics, shown in Figure 4, show that product-
splitting method C1 is better than the other two methods C2 and R. For the 40 instances, sequencing methods RK and WSPT
perform almost the same, but are better than JR. These 40 instances are small- and medium-size problems in terms of the
maximum number of products considered (six). The permutation of products is less than the number of iteration (1000) used
by each heuristic method. RK has a high probability of performing well by enumerating all products sequences.

To further compare the performance of RK and WSPT, we generate two larger problems having six orders with 15
products (O6) and 10 orders with 27 products (O10). The weight of orders is ∼ DU[1, 10]. The number of machines is
set as 6 in stage 1 and 18 in stage 2. Other parameters are as specified in Tables 2 and 4. For each instance, we run 30
replications using each heuristic. The 95% CIs for medians obtained from Mood’s Median test for instances O6 and O10,
shown in Figure 5(a) and (b), clearly show that WSPT out performs RK for these larger instances.

5.3. Seeding Gurobi with heuristic solutions

We seed C1W solutions in Gurobi to investigate if/how seeding improves MILP effectiveness. The run time limit is set
to 1 hour. Table 7 shows the input (Vin) and output (Vout) objective values for Instance 11-40. It turns out that using these
seeds could improve Gurobi’s performance such that it provides better solutions for 27 instances including Instance 32—the
average (maximum) improvement is 4.8% (27.5%). Some LBs returned after seeding are improved (see the 6th column in
Tables 5 and the 5th and 11th columns in 7). Using our calculated LB to evaluate the performance of this hybrid method,
the gaps (GapGH = ((Vout − LBH )/Vout)%) are listed in the 6th and 12th columns in Table 7. Since the computational time
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of C1W is less than 20 seconds, the total running time of this method can be considered as 1 hour which is acceptable for
the coating company.

6. Conclusions and future research

We study an integrated batching and lot streaming problem with variable sublots, incompatible product families, and
sequence-dependent setup in a 2-HFS. An MILP model with two valid inequalities are presented for this problem wherein
the number of sublots for each product, the size of each sublot, and the production sequence for each sublot are deter-
mined simultaneously to minimise TWCT. Our study shows that both MILP and MILP2VI can provide optimal solutions for
small instances but cannot be solved to optimally for medium-size instances, within the operating time-frame used by the
manufacturer. Also, feasible solutions cannot be obtained for one problem instance, which suggests the need for heuristic
development.

We evaluate nine heuristics, each supplemented with RLS. Heuristics C1R, C1W , and C1J found optimal solutions for
Instances 1-10. All heuristics find better solutions than time-limited Gurobi solver for Instances 11-40 except Instance 15.
Further, the computational times of all heuristics are much shorter than the time required by Gurobi. Our statistical analysis
leads us to conclude that C1W is the best heuristic method among all nine methods studied. Finally, a hybrid method which
seeds Gurobi with C1W solutions improves solutions by 4.8% within the allowable computation time—this method enables
companies to make production scheduling decisions effectively.

There are several possible extensions to our research. First, the model could be extended to a multi-stage hybrid flow
shop. Larger multi-stage problems are more typical in practice. Another direction for further research is to consider other
machine environments such as job shop. Furthermore, multi-objective lot streaming problems integrated with batching can
be investigated in future research.
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